Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry

Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry PDF Author: Mariusz Urbański
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110702738
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.

Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry

Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry PDF Author: Mariusz Urbański
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110702738
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.

Deformation Theory of Discontinuous Groups

Deformation Theory of Discontinuous Groups PDF Author: Ali Baklouti
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110765306
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
This book contains the latest developments of the theory of discontinuous groups acting on homogenous spaces, from basic concepts to a comprehensive exposition. It develops the newest approaches and methods in the deformation theory of topological modules and unitary representations and focuses on the geometry of discontinuous groups of solvable Lie groups and their compact extensions. It also presents proofs of recent results, computes fundamental examples, and serves as an introduction and reference for students and experienced researchers in Lie theory, discontinuous groups, and deformation (and moduli) spaces.

The d-bar Neumann Problem and Schrödinger Operators

The d-bar Neumann Problem and Schrödinger Operators PDF Author: Friedrich Haslinger
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111182924
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
This book's subject lies in the nexus of partial differential equations, operator theory, and complex analysis. The spectral analysis of the complex Laplacian and the compactness of the d-bar-Neumann operator are primary topics.The revised 2nd edition explores updates to Schrödinger operators with magnetic fields and connections to the Segal Bargmann space (Fock space), to quantum mechanics, and the uncertainty principle.

The Canonical Operator in Many-Particle Problems and Quantum Field Theory

The Canonical Operator in Many-Particle Problems and Quantum Field Theory PDF Author: Victor P. Maslov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110762706
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
In this monograph we study the problem of construction of asymptotic solutions of equations for functions whose number of arguments tends to infinity as the small parameter tends to zero. Such equations arise in statistical physics and in quantum theory of a large number of fi elds. We consider the problem of renormalization of quantum field theory in the Hamiltonian formalism, which encounters additional difficulties related to the Stückelberg divergences and the Haag theorem. Asymptotic methods for solving pseudodifferential equations with small parameter multiplying the derivatives, as well as the asymptotic methods developed in the present monograph for solving problems in statistical physics and quantum field theory, can be considered from a unified viewpoint if one introduces the notion of abstract canonical operator. The book can be of interest for researchers – specialists in asymptotic methods, statistical physics, and quantum fi eld theory as well as for graduate and undergraduate students of these specialities.

Integral Representation

Integral Representation PDF Author: Walter Roth
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111315479
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This book presents a wide-ranging approach to operator-valued measures and integrals of both vector-valued and set-valued functions. It covers convergence theorems and an integral representation for linear operators on spaces of continuous vector-valued functions on a locally compact space. These are used to extend Choquet theory, which was originally formulated for linear functionals on spaces of real-valued functions, to operators of this type.

Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry

Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry PDF Author: Volker Mayer
Publisher: Springer
ISBN: 3642236502
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen’s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets.

Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps

Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps PDF Author: Mariusz Urbański
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110702681
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.

Graph Directed Markov Systems

Graph Directed Markov Systems PDF Author: R. Daniel Mauldin
Publisher: Cambridge University Press
ISBN: 9780521825382
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
The main focus of this book is the exploration of the geometric and dynamic properties of a far reaching generalization of a conformal iterated function system - a Graph Directed Markov System. These systems are very robust in that they apply to many settings that do not fit into the scheme of conformal iterated systems. The basic theory is laid out here and the authors have touched on many natural questions arising in its context. However, they also emphasise the many issues and current research topics which can be found in original papers. For example the detailed analysis of the structure of harmonic measures of limit sets, the examination of the doubling property of conformal measures, the extensive study of generalized polynomial like mapping or multifractal analysis of geometrically finite Kleinian groups. This book leads readers onto frontier research in the field, making it ideal for both established researchers and graduate students.

Invariant Distances and Metrics in Complex Analysis

Invariant Distances and Metrics in Complex Analysis PDF Author: Marek Jarnicki
Publisher: Walter de Gruyter
ISBN: 3110870312
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Extension of Holomorphic Functions

Extension of Holomorphic Functions PDF Author: Marek Jarnicki
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110627698
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
This second extended edition of the classic reference on the extension problem of holomorphic functions in pluricomplex analysis contains a wealth of additional material, organized under the original chapter structure, and covers in a self-contained way all new and recent developments and theorems that appeared since the publication of the first edition about twenty years ago.