Non-diffusive Heat Conduction in Nano-/micro-scale Structures

Non-diffusive Heat Conduction in Nano-/micro-scale Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
Rapid progress has been made in the manufacture of microelectronic and thermoelectric devices. With continuous decrease in the size of devices and structures, the manipulation and control of phonon-mediated heat transfer on the nano-/micro-scale is becoming a bottleneck for the development of many nano-/micro-technologies. To advance these technologies, it is necessary to understand the fundamental mechanisms of thermal transport at nano-/micro-scale. The new feature of heat transfer in nano-/micro-scale systems is non-diffusive thermal transport which cannot be described by Fourier's law. However, current nano-thermometry of non-diffusive heat transfer still focuses on studying the effective thermal conductivity within the framework of Fourier's law due to a lack of a well-accepted non-diffusive model. The molecular dynamics (MD) and full spectral Boltzmann transport equation (BTE) are unpractical to be applied for experimental data analysis due to their prohibited computational cost. For Gray BTE and other macroscopic models such as Cattaneo-Vernotte (CV) equation, Guyer-Krumhansl (GK) equation, Dual-phase-lag (DPL) equation and et al., they cannot capture the non-diffusive heat transport accurately. In this thesis we will develop a high-fidelity model that can accurately describe phonon transport at nano-/micro-scale regime and can replace Fourier's law for experimental data analysis. The new model named enhanced gray (EG) model is derived from the phonon Boltzmann transport equation (BTE) by considering the second-order terms in Taylor expansion of phonon density distribution. In the proposed enhanced gray BTE (EG-BTE), two parameters associated with inherent material properties, i.e., the ballistic mean free time and the diffusive relaxation time, are used to characterize the non-diffusive nature of heat conduction. Theoretical solutions of EG-BTE based on Fourier transform are presented in three-dimensional domain for transient thermal grating (TTG) experiments and time domain thermo-reflectance (TDTR) experiments. The reconstructed thermal decays by EG-BTE are in excellent match with the measured signal traces in TTG and TDTR experiments, which demonstrates the validity of our new model. For problems where analytical solutions are not available, an implicit lattice Boltzmann method (LBM) is developed to solve the EG-BTE, which is unconditionally stable and computationally efficient. As an illustrative application, the phonon transport in cryogenic crystals is studied by implicit LBM simulation based on EG-BTE. The heat-pulse experiment conducted in cryogenic crystals observed the only direct evidence of ballistic heat transport. The successive interpretation of this benchmark case by EG-BTE provides a better understanding of the physical nature of non-diffusive heat transfer. The proposed EG-BTE opens a new avenue to study the unique features of non-diffusive heat transfer. The current interpretations of TDTR experiments is limited by Fourier's law. For example, the measurements of effective thermal conductivity within the framework of Fourier's law will provide little insight for non-diffusive heat transfer. By deriving the analytical solution of EG-BTE for TDTR experiments, a new theoretical framework based on EG-BTE that can remove the limit of Fourier law for experimental data analysis is developed and proved. Some unique material thermal properties of non-diffusive heat conduction can be characterized, such as the ballistic mean free time and the diffusive relaxation time. But further development and improvement of the theoretical tool are required to understand other features of non-diffusive heat transfer, such as the interfacial thermal conductance, which can be our future work.

Non-diffusive Heat Conduction in Nano-/micro-scale Structures

Non-diffusive Heat Conduction in Nano-/micro-scale Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
Rapid progress has been made in the manufacture of microelectronic and thermoelectric devices. With continuous decrease in the size of devices and structures, the manipulation and control of phonon-mediated heat transfer on the nano-/micro-scale is becoming a bottleneck for the development of many nano-/micro-technologies. To advance these technologies, it is necessary to understand the fundamental mechanisms of thermal transport at nano-/micro-scale. The new feature of heat transfer in nano-/micro-scale systems is non-diffusive thermal transport which cannot be described by Fourier's law. However, current nano-thermometry of non-diffusive heat transfer still focuses on studying the effective thermal conductivity within the framework of Fourier's law due to a lack of a well-accepted non-diffusive model. The molecular dynamics (MD) and full spectral Boltzmann transport equation (BTE) are unpractical to be applied for experimental data analysis due to their prohibited computational cost. For Gray BTE and other macroscopic models such as Cattaneo-Vernotte (CV) equation, Guyer-Krumhansl (GK) equation, Dual-phase-lag (DPL) equation and et al., they cannot capture the non-diffusive heat transport accurately. In this thesis we will develop a high-fidelity model that can accurately describe phonon transport at nano-/micro-scale regime and can replace Fourier's law for experimental data analysis. The new model named enhanced gray (EG) model is derived from the phonon Boltzmann transport equation (BTE) by considering the second-order terms in Taylor expansion of phonon density distribution. In the proposed enhanced gray BTE (EG-BTE), two parameters associated with inherent material properties, i.e., the ballistic mean free time and the diffusive relaxation time, are used to characterize the non-diffusive nature of heat conduction. Theoretical solutions of EG-BTE based on Fourier transform are presented in three-dimensional domain for transient thermal grating (TTG) experiments and time domain thermo-reflectance (TDTR) experiments. The reconstructed thermal decays by EG-BTE are in excellent match with the measured signal traces in TTG and TDTR experiments, which demonstrates the validity of our new model. For problems where analytical solutions are not available, an implicit lattice Boltzmann method (LBM) is developed to solve the EG-BTE, which is unconditionally stable and computationally efficient. As an illustrative application, the phonon transport in cryogenic crystals is studied by implicit LBM simulation based on EG-BTE. The heat-pulse experiment conducted in cryogenic crystals observed the only direct evidence of ballistic heat transport. The successive interpretation of this benchmark case by EG-BTE provides a better understanding of the physical nature of non-diffusive heat transfer. The proposed EG-BTE opens a new avenue to study the unique features of non-diffusive heat transfer. The current interpretations of TDTR experiments is limited by Fourier's law. For example, the measurements of effective thermal conductivity within the framework of Fourier's law will provide little insight for non-diffusive heat transfer. By deriving the analytical solution of EG-BTE for TDTR experiments, a new theoretical framework based on EG-BTE that can remove the limit of Fourier law for experimental data analysis is developed and proved. Some unique material thermal properties of non-diffusive heat conduction can be characterized, such as the ballistic mean free time and the diffusive relaxation time. But further development and improvement of the theoretical tool are required to understand other features of non-diffusive heat transfer, such as the interfacial thermal conductance, which can be our future work.

Nano-scale Heat Transfer in Nanostructures

Nano-scale Heat Transfer in Nanostructures PDF Author: Jihong Al-Ghalith
Publisher: Springer
ISBN: 3319738828
Category : Science
Languages : en
Pages : 88

Get Book Here

Book Description
The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer PDF Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780

Get Book Here

Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Microscale Heat Conduction in Integrated Circuits and Their Constituent Films

Microscale Heat Conduction in Integrated Circuits and Their Constituent Films PDF Author: Y. Sungtaek Ju
Publisher: Springer Science & Business Media
ISBN: 1461552117
Category : Technology & Engineering
Languages : en
Pages : 115

Get Book Here

Book Description
The study of thermal phenomena in microdevices has attracted significant attention recently. The interdisciplinary nature of this topic, however, makes it very difficult for researchers to fully understand details of research results presented in journal articles. For many researchers intending to be active in this field, therefore, a more comprehensive treatment, complete with sufficient background information, is urgently needed. Advances in semiconductor device technology render the thermal characterization and design of ICs increasingly more important. The present book discusses experimental and theoretical studies of heat transfer in transistors and interconnects. A novel optical thermometry technique captures temperature fields with high temporal and spatial failures in devices that are subjected to electrical overstress (EOS) and electrostatic discharge (ESD). Also reported are techniques for determining the thermal transport properties of dielectric passivation layers and ultra-thin silicon-on-insulator (SOI) layers. Theoretical analysis on the data yields insight into the dependence of thermal properties on film processing conditions. The techniques and data presented here will greatly aid the thermal engineering of interconnects and transistors.

Non-Fourier Heat Conduction

Non-Fourier Heat Conduction PDF Author: Alexander I. Zhmakin
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419

Get Book Here

Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.

Microscale and Nanoscale Heat Transfer

Microscale and Nanoscale Heat Transfer PDF Author: C.B. Sobhan
Publisher: CRC Press
ISBN: 1420007114
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re

Nanoscale Energy Transport and Conversion

Nanoscale Energy Transport and Conversion PDF Author: Gang Chen
Publisher: Oxford University Press
ISBN: 9780199774685
Category : Science
Languages : en
Pages : 570

Get Book Here

Book Description
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Handbook of Nanophysics

Handbook of Nanophysics PDF Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1420075454
Category : Science
Languages : en
Pages : 718

Get Book Here

Book Description
In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and struct

Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer PDF Author: Zhuomin Zhang
Publisher: McGraw Hill Professional
ISBN: 0071509739
Category : Technology & Engineering
Languages : en
Pages : 505

Get Book Here

Book Description
A THOROUGH EXPLANATION OF THE METHODOLOGIES USED FOR SOLVING HEAT TRANSFER PROBLEMS IN MICRO- AND NANOSYSTEMS. Written by one of the field's pioneers, this highly practical, focused resource integrates the existing body of traditional knowledge with the most recent breakthroughs to offer the reader a solid foundation as well as working technical skills. THE INFORMATION NEEDED TO ACCOUNT FOR THE SIZE EFFECT WHEN DESIGNING AND ANALYZING SYSTEMS AT THE NANOMETER SCALE, WITH COVERAGE OF Statistical Thermodynamics, Quantum Mechanics, Thermal Properties of Molecules, Kinetic Theory, and Micro/Nanofluidics Thermal Transport in Solid Micro/Nanostructures, Electron and Phonon Scattering, Size Effects, Quantum Conductance, Electronic Band Theory, Tunneling, Nonequilibrium Heat Conduction, and Analysis of Solid State Devices Such As Thermoelectric Refrigeration and Optoelectronics Nanoscale Thermal Radiation and Radiative Properties of Nanomaterials, Radiation Temperature and Entropy, Surface Electromagnetic Waves, and Near-Field Radiation for Energy Conversion Devices IN THE NANOWORLD WHERE THE OLD AXIOMS OF THERMAL ANALYSIS MAY NOT APPLY, NANO/MICROSCALE HEAT TRANSFER IS AN ESSENTIAL RESEARCH AND LEARNING SOURCE. Inside: • Statistical Thermodynamics and Kinetic Theory • Thermal Properties of Solids • Thermal Transport in Solids Micro/Nanostructures • Micro/Nanoscale Thermal Radiation • Radiative Properties of Nanomaterials

The Physics of Phonons

The Physics of Phonons PDF Author: Gyaneshwar P. Srivastava
Publisher: Routledge
ISBN: 1351409557
Category : Science
Languages : en
Pages : 438

Get Book Here

Book Description
There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.