Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428691
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428691
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Lie Theory

Lie Theory PDF Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.

Introduction to Lie Algebras

Introduction to Lie Algebras PDF Author: K. Erdmann
Publisher: Springer Science & Business Media
ISBN: 1846284902
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Kahler Spaces, Nilpotent Orbits, and Singular Reduction

Kahler Spaces, Nilpotent Orbits, and Singular Reduction PDF Author: Johannes Huebschmann
Publisher: American Mathematical Soc.
ISBN: 0821835726
Category : Mathematics
Languages : en
Pages : 110

Get Book Here

Book Description
For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.

Poisson Structures

Poisson Structures PDF Author: Camille Laurent-Gengoux
Publisher: Springer Science & Business Media
ISBN: 3642310907
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras PDF Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821869205
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.

Lie Groups and Algebraic Groups

Lie Groups and Algebraic Groups PDF Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action PDF Author: A. Bialynicki-Birula
Publisher: Springer Science & Business Media
ISBN: 3662050714
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.

The Orbit Method in Geometry and Physics

The Orbit Method in Geometry and Physics PDF Author: Christian Duval
Publisher: Springer Science & Business Media
ISBN: 1461200296
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and remains a useful and powerful tool in such areas as Lie theory, representation theory, integrable systems, complex geometry, and mathematical physics. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits (1962), places him as the founder of orbit theory. The original research papers in this volume are written by prominent mathematicians and reflect recent achievements in orbit theory and other closely related areas such as harmonic analysis, classical representation theory, Lie superalgebras, Poisson geometry, and quantization. Contributors: A. Alekseev, J. Alev, V. Baranovksy, R. Brylinski, J. Dixmier, S. Evens, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, P.W. Michor, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses.