Author: Junjiro Noguchi
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
Author: Junjiro Noguchi
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
Author: Junjiro Noguchi
Publisher:
ISBN: 9784431545729
Category :
Languages : en
Pages : 432
Book Description
Publisher:
ISBN: 9784431545729
Category :
Languages : en
Pages : 432
Book Description
Nevanlinna Theory And Its Relation To Diophantine Approximation
Author: Min Ru
Publisher: World Scientific
ISBN: 9814492485
Category : Mathematics
Languages : en
Pages : 338
Book Description
It was discovered recently that Nevanlinna theory and Diophantine approximation bear striking similarities and connections. This book provides an introduction to both Nevanlinna theory and Diophantine approximation, with emphasis on the analogy between these two subjects.Each chapter is divided into part A and part B. Part A deals with Nevanlinna theory and part B covers Diophantine approximation. At the end of each chapter, a table is provided to indicate the correspondence of theorems.
Publisher: World Scientific
ISBN: 9814492485
Category : Mathematics
Languages : en
Pages : 338
Book Description
It was discovered recently that Nevanlinna theory and Diophantine approximation bear striking similarities and connections. This book provides an introduction to both Nevanlinna theory and Diophantine approximation, with emphasis on the analogy between these two subjects.Each chapter is divided into part A and part B. Part A deals with Nevanlinna theory and part B covers Diophantine approximation. At the end of each chapter, a table is provided to indicate the correspondence of theorems.
Several Complex Variables
Author: Michael Schneider
Publisher: Cambridge University Press
ISBN: 9780521770866
Category : Mathematics
Languages : en
Pages : 582
Book Description
Expository articles on Several Complex Variables and its interactions with PDEs, algebraic geometry, number theory, and differential geometry, first published in 2000.
Publisher: Cambridge University Press
ISBN: 9780521770866
Category : Mathematics
Languages : en
Pages : 582
Book Description
Expository articles on Several Complex Variables and its interactions with PDEs, algebraic geometry, number theory, and differential geometry, first published in 2000.
Nevanlinna Theory And Its Relation To Diophantine Approximation (Second Edition)
Author: Min Ru
Publisher: World Scientific
ISBN: 9811233527
Category : Mathematics
Languages : en
Pages : 443
Book Description
This book describes the theories and developments in Nevanlinna theory and Diophantine approximation. Although these two subjects belong to the different areas: one in complex analysis and one in number theory, it has been discovered that a number of striking similarities exist between these two subjects. A growing understanding of these connections has led to significant advances in both fields. Outstanding conjectures from decades ago are being solved.Over the past 20 years since the first edition appeared, there have been many new and significant developments. The new edition greatly expands the materials. In addition, three new chapters were added. In particular, the theory of algebraic curves, as well as the algebraic hyperbolicity, which provided the motivation for the Nevanlinna theory.
Publisher: World Scientific
ISBN: 9811233527
Category : Mathematics
Languages : en
Pages : 443
Book Description
This book describes the theories and developments in Nevanlinna theory and Diophantine approximation. Although these two subjects belong to the different areas: one in complex analysis and one in number theory, it has been discovered that a number of striking similarities exist between these two subjects. A growing understanding of these connections has led to significant advances in both fields. Outstanding conjectures from decades ago are being solved.Over the past 20 years since the first edition appeared, there have been many new and significant developments. The new edition greatly expands the materials. In addition, three new chapters were added. In particular, the theory of algebraic curves, as well as the algebraic hyperbolicity, which provided the motivation for the Nevanlinna theory.
Nevanlinna’s Theory of Value Distribution
Author: William Cherry
Publisher: Springer Science & Business Media
ISBN: 9783540664161
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Publisher: Springer Science & Business Media
ISBN: 9783540664161
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Applications of Diophantine Approximation to Integral Points and Transcendence
Author: Pietro Corvaja
Publisher: Cambridge University Press
ISBN: 1108424945
Category : Mathematics
Languages : en
Pages : 209
Book Description
Introduction to Diophantine approximation and equations focusing on Schmidt's subspace theorem, with applications to transcendence.
Publisher: Cambridge University Press
ISBN: 1108424945
Category : Mathematics
Languages : en
Pages : 209
Book Description
Introduction to Diophantine approximation and equations focusing on Schmidt's subspace theorem, with applications to transcendence.
Several Complex Variables in China
Author: Chung-Chun Yang
Publisher: American Mathematical Soc.
ISBN: 0821851640
Category : Mathematics
Languages : en
Pages : 188
Book Description
Today, there is increasing interest in complex geometry, geometric function theory, and integral representation theory of several complex variables. The present collection of survey and research articles comprises a current overview of research in several complex variables in China. Among the topics covered are singular integrals, function spaces, differential operators, and factorization of meromorphic functions in several complex variables via analytic or geometric methods. Some results are reported in English for the first time.
Publisher: American Mathematical Soc.
ISBN: 0821851640
Category : Mathematics
Languages : en
Pages : 188
Book Description
Today, there is increasing interest in complex geometry, geometric function theory, and integral representation theory of several complex variables. The present collection of survey and research articles comprises a current overview of research in several complex variables in China. Among the topics covered are singular integrals, function spaces, differential operators, and factorization of meromorphic functions in several complex variables via analytic or geometric methods. Some results are reported in English for the first time.
Nevanlinna’s Theory of Value Distribution
Author: William Cherry
Publisher: Springer Science & Business Media
ISBN: 3662125900
Category : Mathematics
Languages : en
Pages : 214
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Publisher: Springer Science & Business Media
ISBN: 3662125900
Category : Mathematics
Languages : en
Pages : 214
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Analysis And Mathematical Physics
Author: Shaun Bullett
Publisher: World Scientific
ISBN: 1786341018
Category : Science
Languages : en
Pages : 246
Book Description
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Publisher: World Scientific
ISBN: 1786341018
Category : Science
Languages : en
Pages : 246
Book Description
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.