Author: Michela Chiappalone
Publisher: Frontiers Media SA
ISBN: 2889716422
Category : Science
Languages : en
Pages : 130
Book Description
Neuroprosthetics Editor’s Pick 2021
Author: Michela Chiappalone
Publisher: Frontiers Media SA
ISBN: 2889716422
Category : Science
Languages : en
Pages : 130
Book Description
Publisher: Frontiers Media SA
ISBN: 2889716422
Category : Science
Languages : en
Pages : 130
Book Description
Neural Technology Editors' Pick 2021
Author: Laura Ballerini
Publisher: Frontiers Media SA
ISBN: 288971103X
Category : Science
Languages : en
Pages : 135
Book Description
Publisher: Frontiers Media SA
ISBN: 288971103X
Category : Science
Languages : en
Pages : 135
Book Description
Brain Imaging Methods Editor’s Pick 2021
Author: Vince D. Calhoun
Publisher: Frontiers Media SA
ISBN: 2889669653
Category : Science
Languages : en
Pages : 440
Book Description
Publisher: Frontiers Media SA
ISBN: 2889669653
Category : Science
Languages : en
Pages : 440
Book Description
Pediatric Neurology Editor’s Pick 2021
Author: Jo Madeleine Wilmshurst
Publisher: Frontiers Media SA
ISBN: 2889712435
Category : Medical
Languages : en
Pages : 119
Book Description
Publisher: Frontiers Media SA
ISBN: 2889712435
Category : Medical
Languages : en
Pages : 119
Book Description
Frontiers in Neurorobotics – Editor’s Pick 2021
Author: Florian Röhrbein
Publisher: Frontiers Media SA
ISBN: 2889668983
Category : Science
Languages : en
Pages : 159
Book Description
Publisher: Frontiers Media SA
ISBN: 2889668983
Category : Science
Languages : en
Pages : 159
Book Description
Modern Approaches to Augmentation of Brain Function
Author: Ioan Opris
Publisher: Springer Nature
ISBN: 3030545644
Category : Medical
Languages : en
Pages : 747
Book Description
This book covers recent advances in neural technology that provide for enhancements for brain function. It addresses a broad range of neural phenomena occurring in the brain circuits involved in perception, cognition, emotion and action, that represent the building blocks of behavior and cognition. Augmentation of brain function can be achieved by using brain implants for recordings, stimulation, or drug delivery. Alternative methods include employing brain-machine interfaces, as well as noninvasive activation of certain brain areas. This volume evaluates existing methods of brain augmentation while discussing the brain circuitry and neuronal mechanisms that make augmentation possible. This volume offers novel insights into brain disorders, and explores new devices for brain repair while also addressing the philosophical and ethical implications of brain augmentation. The information in this book is relevant to researchers in the fields of neuroscience, engineering, and clinical practice. Advance Praise for Modern Approaches to Augmentation of Brain Function: “This impressive book by leading experts in neuroscience and neuroengineering lays out the future of brain augmentation, in which the human mind and machine merge, leading to a rapid exponential growth of the power of humanity.” Ray Kurzweil, best-selling author, inventor, entrepreneur and a recipient of the National Medal of Technology and Innovation (1999), and the Lemelson-MIT Prize (2001) "This book employs a holistic approach in covering the recent advances in the fields of neuroscience, neuroinformatics, neurotechnology and neuro-psycho-pharmacology. Each chapter of the book covers major aspects of modern brain research in connection with the human mind and behavior, and is authored by researchers with unique expertise in their field. " Ioan Dumitrache, Prof. Dr. Eng. Faculty of Computer Science, Polytechnic University of Bucharest, Bucharest, Romania “This book presents compelling perspectives on what interactive neuroscience will look like in the future, delving into the innovatory ideas of a diverse set of neuroscientists, and speculating on the different ways computer chips implanted in the brains of humans can effect intelligence and communication.” György Buzsáki, MD, PhD is the Biggs Professor of Neuroscience, NYU School of Medicine, New York, NY
Publisher: Springer Nature
ISBN: 3030545644
Category : Medical
Languages : en
Pages : 747
Book Description
This book covers recent advances in neural technology that provide for enhancements for brain function. It addresses a broad range of neural phenomena occurring in the brain circuits involved in perception, cognition, emotion and action, that represent the building blocks of behavior and cognition. Augmentation of brain function can be achieved by using brain implants for recordings, stimulation, or drug delivery. Alternative methods include employing brain-machine interfaces, as well as noninvasive activation of certain brain areas. This volume evaluates existing methods of brain augmentation while discussing the brain circuitry and neuronal mechanisms that make augmentation possible. This volume offers novel insights into brain disorders, and explores new devices for brain repair while also addressing the philosophical and ethical implications of brain augmentation. The information in this book is relevant to researchers in the fields of neuroscience, engineering, and clinical practice. Advance Praise for Modern Approaches to Augmentation of Brain Function: “This impressive book by leading experts in neuroscience and neuroengineering lays out the future of brain augmentation, in which the human mind and machine merge, leading to a rapid exponential growth of the power of humanity.” Ray Kurzweil, best-selling author, inventor, entrepreneur and a recipient of the National Medal of Technology and Innovation (1999), and the Lemelson-MIT Prize (2001) "This book employs a holistic approach in covering the recent advances in the fields of neuroscience, neuroinformatics, neurotechnology and neuro-psycho-pharmacology. Each chapter of the book covers major aspects of modern brain research in connection with the human mind and behavior, and is authored by researchers with unique expertise in their field. " Ioan Dumitrache, Prof. Dr. Eng. Faculty of Computer Science, Polytechnic University of Bucharest, Bucharest, Romania “This book presents compelling perspectives on what interactive neuroscience will look like in the future, delving into the innovatory ideas of a diverse set of neuroscientists, and speculating on the different ways computer chips implanted in the brains of humans can effect intelligence and communication.” György Buzsáki, MD, PhD is the Biggs Professor of Neuroscience, NYU School of Medicine, New York, NY
Brain-Computer Interfaces
Author: Jonathan Wolpaw
Publisher: Oxford University Press
ISBN: 0199921482
Category : Medical
Languages : en
Pages : 419
Book Description
A recognizable surge in the field of Brain Computer Interface (BCI) research and development has emerged in the past two decades. This book is intended to provide an introduction to and summary of essentially all major aspects of BCI research and development. Its goal is to be a comprehensive, balanced, and coordinated presentation of the field's key principles, current practice, and future prospects.
Publisher: Oxford University Press
ISBN: 0199921482
Category : Medical
Languages : en
Pages : 419
Book Description
A recognizable surge in the field of Brain Computer Interface (BCI) research and development has emerged in the past two decades. This book is intended to provide an introduction to and summary of essentially all major aspects of BCI research and development. Its goal is to be a comprehensive, balanced, and coordinated presentation of the field's key principles, current practice, and future prospects.
Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury
Author: Gernot Müller-Putz
Publisher: Springer Nature
ISBN: 3030685454
Category : Medical
Languages : en
Pages : 377
Book Description
This book provides a comprehensive overview of the current state of the art of practical applications of neuroprosthesis based on functional electrical stimulation for restoration of motor functions lost by spinal cord injury and discusses the use of brain-computer interfaces for their control. The book covers numerous topics starting with basics about spinal cord injury, electrical stimulation, electrical brain signals and brain-computer interfaces. It continues with an overview of neuroprosthetic solutions for different purposes and non-invasive and invasive brain-computer interface implementations and presents clinical use cases and practical applications of BCIs. Finally, the authors give an outlook on cutting edge research with a high potential for clinical translation in the near future. All authors committed themselves to use easy-to-understand language and to avoid very specific information, focusing instead on the essential aspects. This makes this book an ideal choice not only for researchers and clinicians at all stages of their education interested in the topic of brain-computer interface-controlled neuroprostheses, but also for end users and their caregivers who want to inform themselves about the current technological possibilities to improve paralyzed motor functions.
Publisher: Springer Nature
ISBN: 3030685454
Category : Medical
Languages : en
Pages : 377
Book Description
This book provides a comprehensive overview of the current state of the art of practical applications of neuroprosthesis based on functional electrical stimulation for restoration of motor functions lost by spinal cord injury and discusses the use of brain-computer interfaces for their control. The book covers numerous topics starting with basics about spinal cord injury, electrical stimulation, electrical brain signals and brain-computer interfaces. It continues with an overview of neuroprosthetic solutions for different purposes and non-invasive and invasive brain-computer interface implementations and presents clinical use cases and practical applications of BCIs. Finally, the authors give an outlook on cutting edge research with a high potential for clinical translation in the near future. All authors committed themselves to use easy-to-understand language and to avoid very specific information, focusing instead on the essential aspects. This makes this book an ideal choice not only for researchers and clinicians at all stages of their education interested in the topic of brain-computer interface-controlled neuroprostheses, but also for end users and their caregivers who want to inform themselves about the current technological possibilities to improve paralyzed motor functions.
The True Creator of Everything
Author: Miguel Nicolelis
Publisher: Yale University Press
ISBN: 0300244630
Category : Science
Languages : en
Pages : 377
Book Description
A radically new cosmological view from a groundbreaking neuroscientist who places the human brain at the center of humanity's universe Renowned neuroscientist Miguel Nicolelis introduces a revolutionary new theory of how the human brain evolved to become an organic computer without rival in the known universe. He undertakes the first attempt to explain the entirety of human history, culture, and civilization based on a series of recently uncovered key principles of brain function. This new cosmology is centered around three fundamental properties of the human brain: its insurmountable malleability to adapt and learn; its exquisite ability to allow multiple individuals to synchronize their minds around a task, goal, or belief; and its incomparable capacity for abstraction. Combining insights from such diverse fields as neuroscience, mathematics, evolution, computer science, physics, history, art, and philosophy, Nicolelis presents a neurobiologically based manifesto for the uniqueness of the human mind and a cautionary tale of the threats that technology poses to present and future generations.
Publisher: Yale University Press
ISBN: 0300244630
Category : Science
Languages : en
Pages : 377
Book Description
A radically new cosmological view from a groundbreaking neuroscientist who places the human brain at the center of humanity's universe Renowned neuroscientist Miguel Nicolelis introduces a revolutionary new theory of how the human brain evolved to become an organic computer without rival in the known universe. He undertakes the first attempt to explain the entirety of human history, culture, and civilization based on a series of recently uncovered key principles of brain function. This new cosmology is centered around three fundamental properties of the human brain: its insurmountable malleability to adapt and learn; its exquisite ability to allow multiple individuals to synchronize their minds around a task, goal, or belief; and its incomparable capacity for abstraction. Combining insights from such diverse fields as neuroscience, mathematics, evolution, computer science, physics, history, art, and philosophy, Nicolelis presents a neurobiologically based manifesto for the uniqueness of the human mind and a cautionary tale of the threats that technology poses to present and future generations.
Broken Movement
Author: John W. Krakauer
Publisher: MIT Press
ISBN: 0262545837
Category : Medical
Languages : en
Pages : 288
Book Description
An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.
Publisher: MIT Press
ISBN: 0262545837
Category : Medical
Languages : en
Pages : 288
Book Description
An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.