Navier-Stokes Equations and Nonlinear Functional Analysis

Navier-Stokes Equations and Nonlinear Functional Analysis PDF Author: Roger Temam
Publisher: SIAM
ISBN: 0898713404
Category : Technology & Engineering
Languages : en
Pages : 147

Get Book Here

Book Description
This second edition attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations.

Navier-Stokes Equations and Nonlinear Functional Analysis

Navier-Stokes Equations and Nonlinear Functional Analysis PDF Author: Roger Temam
Publisher: SIAM
ISBN: 0898713404
Category : Technology & Engineering
Languages : en
Pages : 147

Get Book Here

Book Description
This second edition attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations.

Navier-Stokes Equations and Nonlinear Functional Analysis

Navier-Stokes Equations and Nonlinear Functional Analysis PDF Author: Roger Temam
Publisher: SIAM
ISBN: 9781611970050
Category : Technology & Engineering
Languages : en
Pages : 155

Get Book Here

Book Description
This second edition, like the first, attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations in the following areas: existence, uniqueness, and regularity of solutions in space dimensions two and three; large time behavior of solutions and attractors; and numerical analysis of the Navier-Stokes equations. Since publication of the first edition of these lectures in 1983, there has been extensive research in the area of inertial manifolds for Navier-Stokes equations. These developments are addressed in a new section devoted entirely to inertial manifolds. Inertial manifolds were first introduced under this name in 1985 and, since then, have been systematically studied for partial differential equations of the Navier-Stokes type. Inertial manifolds are a global version of central manifolds. When they exist they encompass the complete dynamics of a system, reducing the dynamics of an infinite system to that of a smooth, finite-dimensional one called the inertial system. Although the theory of inertial manifolds for Navier-Stokes equations is not complete at this time, there is already a very interesting and significant set of results which deserves to be known, in the hope that it will stimulate further research in this area. These results are reported in this edition.

Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations PDF Author: Charles R. Doering
Publisher: Cambridge University Press
ISBN: 9780521445689
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.

Nonlinear Functional Analysis

Nonlinear Functional Analysis PDF Author: Jacob T. Schwartz
Publisher: CRC Press
ISBN: 9780677015002
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description


Linear and Nonlinear Functional Analysis with Applications

Linear and Nonlinear Functional Analysis with Applications PDF Author: Philippe G. Ciarlet
Publisher: SIAM
ISBN: 1611972582
Category : Mathematics
Languages : en
Pages : 847

Get Book Here

Book Description
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.

The Navier-Stokes Equations

The Navier-Stokes Equations PDF Author: Hermann Sohr
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models PDF Author: Franck Boyer
Publisher: Springer Science & Business Media
ISBN: 1461459753
Category : Mathematics
Languages : en
Pages : 538

Get Book Here

Book Description
The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .

Navier-Stokes Equations

Navier-Stokes Equations PDF Author: Roger Temam
Publisher: American Mathematical Soc.
ISBN: 0821827375
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.

Navier-Stokes Equations and Turbulence

Navier-Stokes Equations and Turbulence PDF Author: C. Foias
Publisher: Cambridge University Press
ISBN: 1139428993
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
This book presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience.

Navier–Stokes Equations

Navier–Stokes Equations PDF Author: Grzegorz Łukaszewicz
Publisher: Springer
ISBN: 331927760X
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.