Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems PDF Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128227699
Category : Technology & Engineering
Languages : en
Pages : 544

Get Book Here

Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. - Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes - Discusses the basic principles involved in energy conversion and storage systems - Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems PDF Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128227699
Category : Technology & Engineering
Languages : en
Pages : 544

Get Book Here

Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. - Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes - Discusses the basic principles involved in energy conversion and storage systems - Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Electrocatalytic Materials for Renewable Energy

Electrocatalytic Materials for Renewable Energy PDF Author: Sudheesh K. Shukla
Publisher: John Wiley & Sons
ISBN: 1119901294
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
ELECTROCATALYTIC MATERIALS FOR RENEWABLE ENERGY The book provides a comprehensive overview of various electrocatalytic materials and their applications in renewable energy thereby promoting a sustainable and clean energy future for all. As an important branch of catalysts, electrocatalytic materials exhibit important catalytic reactions that can convert and store energy through reactions involving electron transfer. However, the study of electrocatalytic materials presents a huge challenge due to the highly complicated reaction network, the variety of reaction selectivity, and the puzzling reaction mechanisms. Tremendous research efforts have been made toward the fabrication of efficient electrocatalytic materials that can be used in the energy sectors. The book covers a wide range of topics, including the synthesis, characterization, and performance evaluation of electrocatalytic materials for different renewable energy applications. Furthermore, the book discusses the challenges and opportunities associated with the development and utilization of electrocatalytic materials for renewable energy. The future utility of different electrocatalytic materials is also well-defined in the context of the renewable energy approach. The contributors to this book are leading experts in the field of electrocatalytic materials for renewable energy, including scientists and engineers from academia, industry, and national laboratories. Their collective expertise and knowledge provide valuable insights into the latest advances in electrocatalysis for renewable energy applications. Audience This book is intended for researchers and professionals in the fields of materials science, chemistry, physics, and engineering who are interested in the development and utilization of electrocatalytic materials for renewable energy.

Oxide Free Nanomaterials for Energy Storage and Conversion Applications

Oxide Free Nanomaterials for Energy Storage and Conversion Applications PDF Author: Prabhakarn Arunachalam
Publisher: Elsevier
ISBN: 0128242248
Category : Technology & Engineering
Languages : en
Pages : 494

Get Book Here

Book Description
Oxide Free Nanomaterials for Energy Storage and Conversion Applications covers in depth topics on non-oxide nanomaterials involving transition metal nitrides, carbides, selenides, phosphides, oxynitrides based electrodes, & other non-oxide groups. The current application of nanostructured nonoxides involves their major usage in energy storage and conversion devices variety of applications such as supercapacitor, batteries, dye-sensitized solar cells and hydrogen production applications. The current application of energy storage devices involves their usage of nanostructured non-oxide materials with improved energy and power densities. In this book readers will discover the major advancements in this field during the past decades. The various techniques used to prepare environmentally friendly nanostructured non-oxide materials, their structural and morphological characterization, their improved mechanical and material properties, and finally, current applications and future impacts of these materials are discussed. While planning and fabricating non-oxide materials, the readers must be concern over that they ought to be abundant, cost-efficient and environment-friendly for clean innovation and conceivably be of use in an expansive choice of utilization. The book gives detailed literature on the development of nanostructured non-oxides, their use as energy related devices and their present trend in the industry and market. This book also emphasis on the latest advancement about application of these noble non-oxide based materials for photocatalytic water-splitting. Recent progress on various kinds of both photocatalytic and electrocatalytic nanomaterials is reviewed, and essential aspects which govern catalytic behaviours and the corresponding stability are discussed. The book will give an updated literature on the synthesis, potential applications and future of nanostructured non-oxides in energy related applications. This book is highly useful to researchers working in the field with diversified backgrounds are expected to making the chapter truly interdisciplinary in nature. The contents in the book will emphasize the recent advances in interdisciplinary research on processing, morphology, structure and properties of nanostructured non-materials and their applications in energy applications such as supercapacitors, batteries, solar cells, electrochemical water splitting and other energy applications. Thus, nanotechnology researchers, scientists and experts need to have update of the growing trends and applications in the field of science and technology. Further, the postgraduate students, scientists, researchers and technologists are need to buy this book. - Offers a comprehensive coverage of the nanostructured non-oxide materials and their potential energy applications - Examines the properties of nanostructured non-oxide materials that make them so adaptable - Explores the mechanisms by which nanoparticles interact with each other, showing how these can be used for industrial applications - Shows the how nanostructured non-oxide materials are used in a wide range of industry sectors, containing energy production and storage

Fundamentals and Supercapacitor Applications of 2D Materials

Fundamentals and Supercapacitor Applications of 2D Materials PDF Author: Chandra Sekhar Rout
Publisher: Elsevier
ISBN: 0128219947
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. - Explores recent developments and looks at the importance of 2D materials in energy storage technologies - Presents both the theoretical and DFT related studies - Discusses the impact on performance of various operating conditions - Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive

Polymer/Fullerene Nanocomposites

Polymer/Fullerene Nanocomposites PDF Author: Ayesha Kausar
Publisher: Elsevier
ISBN: 0323995160
Category : Technology & Engineering
Languages : en
Pages : 278

Get Book Here

Book Description
Polymer/Fullerene Nanocomposites: Design and Applications synopsizes state-of-the-art essentials and versatile inventions in polymers and fullerenes derived nanocomposites. As the design, fabrication and exploration of polymeric materials with fullerenes in advanced nanomaterials is progressing quickly because of their unique combination of properties, including optical, electronic, electrical, mechanical, thermal, photovoltaic, sensing, shape memory, capacitive, antimicrobial, and other applications, this book fills a void in literature compilation and assessment for a field still in its infancy. The introductory chapter of this manuscript provides a comprehensive update on the fundamentals and applications of fullerenes, with following chapters revealing the properties and essential aspects of polymeric nanocomposites. - Reconnoiters state-of-the-art of fullerenes - Focuses on fullerene nano-additives, developing covalent interactions, and physical dispersion with conjugated polymers and other polymeric matrices - Emphasizes fullerene nanowhisker and nanoball nanofillers in nanocomposites - Unfolds advanced applications of polymer/fullerene nanomaterials in stimuli-responsive systems, optoelectronic devices (photovoltaics, light emitting diodes and optical sensors), fuel cells, supercapacitors and biomedical fields

Sustainable Materials for Electrochemcial Capacitors

Sustainable Materials for Electrochemcial Capacitors PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1394167083
Category : Technology & Engineering
Languages : en
Pages : 529

Get Book Here

Book Description
Sustainable Materials for Electrochemical Capacitors The book highlights the properties of sustainable materials for the production of commercial electrochemical capacitors. Sustainable Materials for Electrochemical Capacitors details the progress in the usage of ubiquitous environmentally sustainable materials. Due to their cost effectiveness, flexible forms, frequent accessibility, and environmentally friendly nature, electrochemical capacitors with significant surface areas of their carbon components are quite common. Many novel ways for using bio-derived components in highly efficient electrochemical capacitors are being established as a consequence of current research, and this book provides details of all these developments. The book provides: A broad overview of properties explored for the development of electrochemical capacitors; Introduces potential applications of electrochemical capacitors; Highlights sustainable materials exploited for the production of electrochemical capacitors; Presents commercial potential of electrochemical capacitors. Audience This is a useful guide for engineers, materials scientists, physicists, and innovators, who are linked to the development and applications of electrochemical capacitors.

Collagen-Derived Materials

Collagen-Derived Materials PDF Author: Feng Wang
Publisher: John Wiley & Sons
ISBN: 3527834516
Category : Science
Languages : en
Pages : 439

Get Book Here

Book Description
b”Collagen-Derived MaterialsComprehensive Resource for Current Ideas and Strategies for the Synthesis and Characterization of Advanced Collagen-Derived Materials This book presents and summarizes new synthetic strategies and multi-functional applications of collagen-derived materials in electrochemical energy storage and conversion. Through easily-comprehensible illustrations and images, the book presents basic knowledge for collagen-derived materials (including gelatin and collagen-derived carbons) and their typical synthesis and applications, thus enabling students and new researchers to obtain a thorough understanding of different materials and corresponding application areas. This book also serves as an important reference book for scientists and engineers in different research fields. It presents the up-to-date ideas and strategies for the synthesis and characterization of advanced collagen-derived materials, as well as multi-functional applications (especially in energy-related areas). Sample topics covered within the book include: Structural compositions, properties, and extraction of collagen and gelatin Precursors, structural compositions, and synthesis of collagen-derived carbons Applications of collagen-derived materials in electrochemical energy storage and conversion Applications of collagen-derived materials as electrode and supporting materials in the electrochemical energy storage and conversion systems, including capacitors, batteries, and electrocatalysts Challenges and opportunities for the design and synthesis of different collagen-derived materials For electrochemists, materials scientists, chemical engineers and students in related programs of study who are interested in the topic of collagen-derived materials, Collagen-Derived Materials: Synthesis and Applications in Electrochemical Energy Storage and Conversion serves as an important resource for gaining a holistic understanding of the field and learning about the state of the art based on promising energy-related applications.

Green Functionalized Nanomaterials for Environmental Applications

Green Functionalized Nanomaterials for Environmental Applications PDF Author: Uma Shanker
Publisher: Elsevier
ISBN: 0128236159
Category : Technology & Engineering
Languages : en
Pages : 624

Get Book Here

Book Description
Green nanomaterials are classed as nanomaterials with no environmentally harmful, toxic, properties. The photocatalysis of nanomaterials involves photo-conduction value in efficient removal/degradation of noxious pollutants. Green nanotechnology has objectives for the development of products and processes which are environmentally friendly, economically sustainable, safe, energy-efficient, and produce little waste or emissions. Such products and processes are based on renewable materials and/or have a low net impact on the environment. Green functionalized nanomaterials, formed by a combination of nanomaterials with natural materials or are derived through a green source, are the new trends in the remediation of pollutants in environmental industries. This has the effect of making photoactive nanomaterials work under UV/sunlight radiation in order to produce reactive radical species that rapidly remove pollutants by redox mechanism. Green Functionalized Nanomaterials for Environmental Applications focuses on recent developments in the area of fabrication of green nanomaterials and their properties. It also looks at ways of lowering the risk of exposure of green functionalized nanomaterials. This needs to be pursued in the future for investigating and assessing health risks, which may be due to exposure to green nanomaterials. It is an important reference source for all those seeking to improve their understanding of how green functionalized nanomaterials are being used in a range of environmental applications, as well as considering potential toxicity implications. - Highlights innovative industrial technologies for green functionalized nanomaterials - Covers major fabrication techniques for sustainable functionalized nanomaterials - Shows how sustainable functionalized nanomaterials are being developed for commercial applications

Sustainable Approaches in Pharmaceutical Sciences

Sustainable Approaches in Pharmaceutical Sciences PDF Author: Kamal Shah
Publisher: John Wiley & Sons
ISBN: 1119889847
Category : Medical
Languages : en
Pages : 293

Get Book Here

Book Description
Highly comprehensive and detailed text on best possible sustainable approaches associated with the development, design, and origination of pharmaceuticals Sustainable Approaches in Pharmaceutical Sciences enables readers to understand the best possible green approaches associated with the development, design, and origination of pharmaceuticals, including resources that may minimize the adverse effects associated with synthesis, isolation, and extraction. Sustainable Approaches in Pharmaceutical Sciences covers a myriad of current topics, including mechanochemical improvements for API synthesis, as well as the role of artificial intelligence (AI) in the development and discovery of pharmaceuticals, along with recent developments in hydrogels which respond to triggered factors during topical drug delivery. Authored by experienced scientists from institutions across the world, other sample topics covered in Sustainable Approaches in Pharmaceutical Sciences include: Green technologies and benefits associated with them, white biotechnology, green chemistry, and eco-friendly approaches for designing active pharmaceutical ingredients Impact of sustainable approaches in pharmaceutical industries regarding use of solvents, nanoparticles formulations, and antimicrobial bandages Micro-extractive methods capable of generating high recovery values of the analytes and associated techniques, such as dispersive liquid-liquid microextraction Benefits of the exploration of sustainable chemistry on a commercial scale, particularly in relation to bioresources, chemical manufacturing, and organic transformation Discussing both the foundational science and practicality of different approaches regarding human and environmental health, Sustainable Approaches in Pharmaceutical Sciences is an essential resource for scientists, medical professionals, and industrial professionals working in the fields of sustainable technology and synthesis in pharmaceutical sciences, along with advanced level students.

Photocatalytic Degradation of Dyes

Photocatalytic Degradation of Dyes PDF Author: Sushma Dave
Publisher: Elsevier
ISBN: 0128242027
Category : Technology & Engineering
Languages : en
Pages : 796

Get Book Here

Book Description
Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives covers in detail current trends and future aspects on photocatalytic degradation of organic dyes using novel photocatalytic techniques such as metallic nanoparticles, heterogeneous and hybrid systems using visible light irradiation. It highlights the most recent scientific and technological achievements and importance of degradation of dyes in the textile effluent by simple environmental friendly approaches using eco-friendly catalysts. It is of assistance to everyone interested in bioremediation of effluents: professionals, consulting engineers, academicians, and research scholars as well. - Describes the basic photocatalytic techniques and their application in wastewater treatment - Covers the key reactive species accounting for the photodegradation of different dyes, providing helpful guidelines that could be applied to foster the development of efficient photodegradation systems - Includes Description of a wide variety of catalysts and their application in degradation of dyes in the effluent of variable matrices (such as textile effluent, pharmaceutical industry effluent, food industry effluent) - Presents the application of doped semiconductors in the degradation of dyes, hybrid systems and their importance in the dye degradation - Describes the biological synthesis of metallic nanostructures and their use in dye degradation using visible range of light irradiation - Discusses the mechanistic aspect of the dye degradation using photo catalysts