Author: Emmanuel Amiot
Publisher: Springer
ISBN: 3319455818
Category : Computers
Languages : en
Pages : 214
Book Description
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
Music Through Fourier Space
Author: Emmanuel Amiot
Publisher: Springer
ISBN: 3319455818
Category : Computers
Languages : en
Pages : 214
Book Description
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
Publisher: Springer
ISBN: 3319455818
Category : Computers
Languages : en
Pages : 214
Book Description
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
Transformational analysis in practice: Music-analytical studies on composers and musicians from around the world
Author: Bozhidar Chapkanov
Publisher: Vernon Press
ISBN: 1648898130
Category : Music
Languages : en
Pages : 368
Book Description
'Transformational analysis in practice' is a Must-Have for everyone working in the field or aspiring to develop their music-analytical and theoretical skills in transformational theory. This co-authored book puts together a plethora of analytical studies, diverse both in the repertoires covered and the methodologies employed. It is a much-needed anthology in this sub-field of music analysis, which has been developing and growing in recent years, reaching ever wider outlets in English-speaking countries and beyond, from dedicated conference panels to YouTube videos. The book is divided into four parts based on the repertoires under discussion. Part I encompasses four analytical studies on familiar composers from the European Romanticism of the nineteenth century. Part II analyzes the music of less familiar composers from Brazil and Turkey. Part III offers four contrasting ways to adapt the analytical capabilities of neo-Riemannian theory to the post-tonal music of the twentieth century. Catering to the interests of jazz performers and researchers, as well as those into popular music production, Part IV offers transformational analytical approaches to both notated and improvised jazz, emphasizing John Coltrane’s performance. Providing an invaluable synthesis of a wide range of analytical studies, this book will be an essential companion for many musicology students, as well as for performers and composers.
Publisher: Vernon Press
ISBN: 1648898130
Category : Music
Languages : en
Pages : 368
Book Description
'Transformational analysis in practice' is a Must-Have for everyone working in the field or aspiring to develop their music-analytical and theoretical skills in transformational theory. This co-authored book puts together a plethora of analytical studies, diverse both in the repertoires covered and the methodologies employed. It is a much-needed anthology in this sub-field of music analysis, which has been developing and growing in recent years, reaching ever wider outlets in English-speaking countries and beyond, from dedicated conference panels to YouTube videos. The book is divided into four parts based on the repertoires under discussion. Part I encompasses four analytical studies on familiar composers from the European Romanticism of the nineteenth century. Part II analyzes the music of less familiar composers from Brazil and Turkey. Part III offers four contrasting ways to adapt the analytical capabilities of neo-Riemannian theory to the post-tonal music of the twentieth century. Catering to the interests of jazz performers and researchers, as well as those into popular music production, Part IV offers transformational analytical approaches to both notated and improvised jazz, emphasizing John Coltrane’s performance. Providing an invaluable synthesis of a wide range of analytical studies, this book will be an essential companion for many musicology students, as well as for performers and composers.
Music: A Mathematical Offering
Author: Dave Benson
Publisher: Cambridge University Press
ISBN: 0521853877
Category : Mathematics
Languages : en
Pages : 426
Book Description
This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.
Publisher: Cambridge University Press
ISBN: 0521853877
Category : Mathematics
Languages : en
Pages : 426
Book Description
This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.
Geometry and Topology in Music
Author: Moreno Andreatta
Publisher: CRC Press
ISBN: 1040156703
Category : Mathematics
Languages : en
Pages : 130
Book Description
This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification. Contributions address topics of voice leading, Tonnetze (maps of notes and chords), and automatic music classification. Focusing on some geometrical and topological aspects of the representation and formalisation of musical structures and processes, the book covers topological features of voice-leading geometries in the most recent advances in this mathematical approach to representing how chords are connected through the motion of voices, leading to analytically useful simplified models of high-dimensional spaces; It generalizes the idea of a Tonnetz, a geometrical map of tones or chords, and shows how topological aspects of these maps can correspond to many concepts from music theory. The resulting framework embeds the chord maps of neo-Riemannian theory in continuous spaces that relate chords of different sizes and includes extensions of this approach to rhythm theory. It further introduces an application of topology to automatic music classification, drawing upon both static topological representations and time-series evolution, showing how static and dynamic features of music interact as features of musical style. This volume will be a key resource for academics, researchers, and advanced students of music, music analyses, music composition, mathematical music theory, computational musicology, and music informatics. It was originally published as a special issue of the Journal of Mathematics and Music.
Publisher: CRC Press
ISBN: 1040156703
Category : Mathematics
Languages : en
Pages : 130
Book Description
This book introduces path-breaking applications of concepts from mathematical topology to music-theory topics including harmony, chord progressions, rhythm, and music classification. Contributions address topics of voice leading, Tonnetze (maps of notes and chords), and automatic music classification. Focusing on some geometrical and topological aspects of the representation and formalisation of musical structures and processes, the book covers topological features of voice-leading geometries in the most recent advances in this mathematical approach to representing how chords are connected through the motion of voices, leading to analytically useful simplified models of high-dimensional spaces; It generalizes the idea of a Tonnetz, a geometrical map of tones or chords, and shows how topological aspects of these maps can correspond to many concepts from music theory. The resulting framework embeds the chord maps of neo-Riemannian theory in continuous spaces that relate chords of different sizes and includes extensions of this approach to rhythm theory. It further introduces an application of topology to automatic music classification, drawing upon both static topological representations and time-series evolution, showing how static and dynamic features of music interact as features of musical style. This volume will be a key resource for academics, researchers, and advanced students of music, music analyses, music composition, mathematical music theory, computational musicology, and music informatics. It was originally published as a special issue of the Journal of Mathematics and Music.
Mathematics and Computation in Music
Author: Mariana Montiel
Publisher: Springer Nature
ISBN: 3031070151
Category : Language Arts & Disciplines
Languages : en
Pages : 418
Book Description
This book constitutes the thoroughly refereed proceedings of the 8th International Conference on Mathematics and Computation in Music, MCM 2022, held in Atlanta, GA, USA, in June 2022. The 29 full papers and 8 short papers presented were carefully reviewed and selected from 45 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in Mathematical Scale and Rhythm Theory: Combinatorial, Graph Theoretic, Group Theoretic and Transformational Approaches; Categorical and Algebraic Approaches to Music; Algorithms and Modeling for Music and Music-Related Phenomena; Applications of Mathematics to Musical Analysis; Mathematical Techniques and Microtonality
Publisher: Springer Nature
ISBN: 3031070151
Category : Language Arts & Disciplines
Languages : en
Pages : 418
Book Description
This book constitutes the thoroughly refereed proceedings of the 8th International Conference on Mathematics and Computation in Music, MCM 2022, held in Atlanta, GA, USA, in June 2022. The 29 full papers and 8 short papers presented were carefully reviewed and selected from 45 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in Mathematical Scale and Rhythm Theory: Combinatorial, Graph Theoretic, Group Theoretic and Transformational Approaches; Categorical and Algebraic Approaches to Music; Algorithms and Modeling for Music and Music-Related Phenomena; Applications of Mathematics to Musical Analysis; Mathematical Techniques and Microtonality
Mathematics and Computation in Music
Author: Octavio A. Agustín-Aquino
Publisher: Springer
ISBN: 3319718274
Category : Computers
Languages : en
Pages : 375
Book Description
This book constitutes the thoroughly refereed proceedings of the 6th International Conference on Mathematics and Computation in Music, MCM 2017, held in Mexico City, Mexico, in June 2017. The 26 full papers and 2 short papers presented were carefully reviewed and selected from 40 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in topical sections on algebraic models, computer assisted performance, Fourier analysis, Gesture Theory, Graph Theory and Combinatorics, Machine Learning, and Probability and Statistics in Musical Analysis and Composition.
Publisher: Springer
ISBN: 3319718274
Category : Computers
Languages : en
Pages : 375
Book Description
This book constitutes the thoroughly refereed proceedings of the 6th International Conference on Mathematics and Computation in Music, MCM 2017, held in Mexico City, Mexico, in June 2017. The 26 full papers and 2 short papers presented were carefully reviewed and selected from 40 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organized in topical sections on algebraic models, computer assisted performance, Fourier analysis, Gesture Theory, Graph Theory and Combinatorics, Machine Learning, and Probability and Statistics in Musical Analysis and Composition.
Theoretical And Practical Pedagogy Of Mathematical Music Theory: Music For Mathematics And Mathematics For Music, From School To Postgraduate Levels
Author: Mariana Montiel
Publisher: World Scientific
ISBN: 9813228369
Category : Mathematics
Languages : en
Pages : 325
Book Description
During the past 40 years, mathematical music theory has grown and developed in both the fields of music and mathematics. In music pedagogy, the need to analyze patterns of modern composition has produced Musical Set Theory, and the use of Group Theory and other modern mathematical structures have become almost as common as the application of mathematics in the fields of engineering or chemistry. Mathematicians have been developing stimulating ideas when exploring mathematical applications to established musical relations. Mathematics students have seen in Music in Mathematics courses, how their accumulated knowledge of abstract ideas can be applied to an important human activity while reinforcing their dexterity in Mathematics. Similarly, new general education courses in Music and Mathematics are being developed and are arising at the university level, as well as for high school and general audiences without requiring a sophisticated background in either music nor mathematics. Mathematical Music Theorists have also been developing exciting, creative courses for high school teachers and students of mathematics. These courses and projects have been implemented in the USA, in China, Ireland, France, Australia, and Spain.The objective of this volume is to share the motivation and content of some of these exciting, new Mathematical Theory and Music in Mathematics courses while contributing concrete materials to interested readers.
Publisher: World Scientific
ISBN: 9813228369
Category : Mathematics
Languages : en
Pages : 325
Book Description
During the past 40 years, mathematical music theory has grown and developed in both the fields of music and mathematics. In music pedagogy, the need to analyze patterns of modern composition has produced Musical Set Theory, and the use of Group Theory and other modern mathematical structures have become almost as common as the application of mathematics in the fields of engineering or chemistry. Mathematicians have been developing stimulating ideas when exploring mathematical applications to established musical relations. Mathematics students have seen in Music in Mathematics courses, how their accumulated knowledge of abstract ideas can be applied to an important human activity while reinforcing their dexterity in Mathematics. Similarly, new general education courses in Music and Mathematics are being developed and are arising at the university level, as well as for high school and general audiences without requiring a sophisticated background in either music nor mathematics. Mathematical Music Theorists have also been developing exciting, creative courses for high school teachers and students of mathematics. These courses and projects have been implemented in the USA, in China, Ireland, France, Australia, and Spain.The objective of this volume is to share the motivation and content of some of these exciting, new Mathematical Theory and Music in Mathematics courses while contributing concrete materials to interested readers.
Fundamentals of Music Processing
Author: Meinard Müller
Publisher: Springer Nature
ISBN: 3030698084
Category : Computers
Languages : en
Pages : 495
Book Description
The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology. The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform—concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses—in a mathematically rigorous way—essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book’s goal is to offer detailed technological insights and a deep understanding of music processing applications. As a substantial extension, the textbook’s second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author’s institutional web page at the International Audio Laboratories Erlangen.
Publisher: Springer Nature
ISBN: 3030698084
Category : Computers
Languages : en
Pages : 495
Book Description
The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology. The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform—concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses—in a mathematically rigorous way—essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book’s goal is to offer detailed technological insights and a deep understanding of music processing applications. As a substantial extension, the textbook’s second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author’s institutional web page at the International Audio Laboratories Erlangen.
Pattern in Music
Author: Darrell Conklin
Publisher: CRC Press
ISBN: 1003800831
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book presents analyses of pattern in music from different computational and mathematical perspectives. A central purpose of music analysis is to represent, discover, and evaluate repeated structures within single pieces or within larger corpora of related pieces. In the chapters of this book, music corpora are structured as monophonic melodies, polyphony, or chord sequences. Patterns are represented either extensionally as locations of pattern occurrences in the music, or intensionally as sequences of pitch or chord features, rhythmic profiles, geometric point sets, and logical expressions. The chapters cover both deductive analysis, where music is queried for occurrences of a known pattern, and inductive analysis, where patterns are found using pattern discovery algorithms. Results are evaluated using a variety of methods including visualization, contrasting corpus analysis, and reference to known and expected patterns. Pattern in Music will be a key resource for academics, researchers, and advanced students of music, musicology, music analyses, mathematical music theory, computational musicology, and music informatics. This book was originally published as a special issue of the Journal of Mathematics and Music.
Publisher: CRC Press
ISBN: 1003800831
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book presents analyses of pattern in music from different computational and mathematical perspectives. A central purpose of music analysis is to represent, discover, and evaluate repeated structures within single pieces or within larger corpora of related pieces. In the chapters of this book, music corpora are structured as monophonic melodies, polyphony, or chord sequences. Patterns are represented either extensionally as locations of pattern occurrences in the music, or intensionally as sequences of pitch or chord features, rhythmic profiles, geometric point sets, and logical expressions. The chapters cover both deductive analysis, where music is queried for occurrences of a known pattern, and inductive analysis, where patterns are found using pattern discovery algorithms. Results are evaluated using a variety of methods including visualization, contrasting corpus analysis, and reference to known and expected patterns. Pattern in Music will be a key resource for academics, researchers, and advanced students of music, musicology, music analyses, mathematical music theory, computational musicology, and music informatics. This book was originally published as a special issue of the Journal of Mathematics and Music.
Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 140088389X
Category : Mathematics
Languages : en
Pages : 312
Book Description
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.
Publisher: Princeton University Press
ISBN: 140088389X
Category : Mathematics
Languages : en
Pages : 312
Book Description
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.