Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets

Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets PDF Author: Schöller, Lukas
Publisher: KIT Scientific Publishing
ISBN: 3731513404
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
During the production of fiber-reinforced thermosets, the resin material undergoes a reaction that can lead to damage. A two-stage polymerization reaction is modeled using molecular dynamics and evaluations of the system including a fiber surface are performed. In addition, a phase-field model for crack propagation in heterogeneous systems is derived. This model is able to predict crack growth where established models fail. Finally, the model is used to predict crack formation during curing.

Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets

Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets PDF Author: Schöller, Lukas
Publisher: KIT Scientific Publishing
ISBN: 3731513404
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
During the production of fiber-reinforced thermosets, the resin material undergoes a reaction that can lead to damage. A two-stage polymerization reaction is modeled using molecular dynamics and evaluations of the system including a fiber surface are performed. In addition, a phase-field model for crack propagation in heterogeneous systems is derived. This model is able to predict crack growth where established models fail. Finally, the model is used to predict crack formation during curing.

Application of Data Mining and Machine Learning Methods to Industrial Heat Treatment Processes for Hardness Prediction

Application of Data Mining and Machine Learning Methods to Industrial Heat Treatment Processes for Hardness Prediction PDF Author: Lingelbach, Yannick
Publisher: KIT Scientific Publishing
ISBN: 3731513528
Category :
Languages : en
Pages : 278

Get Book Here

Book Description
This work presents a data mining framework applied to industrial heattreatment (bainitization and case hardening) aiming to optimize processes and reduce costs. The framework analyses factors such as material, production line, and quality assessment for preprocessing, feature extraction, and drift corrections. Machine learning is employed to devise robust prediction strategies for hardness. Its implementation in an industry pilot demonstrates the economic benefits of the framework. - This work presents a data mining framework applied to industrial heattreatment (bainitization and case hardening) aiming to optimize processes and reduce costs. The framework analyses factors such as material, production line, and quality assessment for preprocessing, feature extraction, and drift corrections. Machine learning is employed to devise robust prediction strategies for hardness. Its implementation in an industry pilot demonstrates the economic benefits of the framework.

Epoxy Composites

Epoxy Composites PDF Author: Jyotishkumar Parameswaranpillai
Publisher: John Wiley & Sons
ISBN: 3527346783
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Discover a one-stop resource for in-depth knowledge on epoxy composites from leading voices in the field Used in a wide variety of materials engineering applications, epoxy composites are highly relevant to the work of engineers and scientists in many fields. Recent developments have allowed for significant advancements in their preparation, processing and characterization that are highly relevant to the aerospace and automobile industry, among others. In Epoxy Composites: Fabrication, Characterization and Applications, a distinguished team of authors and editors deliver a comprehensive and straightforward summary of the most recent developments in the area of epoxy composites. The book emphasizes their preparation, characterization and applications, providing a complete understanding of the correlation of rheology, cure reaction, morphology, and thermo-mechanical properties with filler dispersion. Readers will learn about a variety of topics on the cutting-edge of epoxy composite fabrication and characterization, including smart epoxy composites, theoretical modeling, recycling and environmental issues, safety issues, and future prospects for these highly practical materials. Readers will also benefit from the inclusion of: A thorough introduction to epoxy composites, their synthesis and manufacturing, and micro- and nano-scale structure formation in epoxy and clay nanocomposites An exploration of long fiber reinforced epoxy composites and eco-friendly epoxy-based composites Practical discussions of the processing of epoxy composites based on carbon nanomaterials and the thermal stability and flame retardancy of epoxy composites An analysis of the spectroscopy and X-ray scattering studies of epoxy composites Perfect for materials scientists, polymer chemists, and mechanical engineers, Epoxy Composites: Fabrication, Characterization and Applications will also earn a place in the libraries of engineering scientists working in industry and process engineers seeking a comprehensive and exhaustive resource on epoxy composites.

Fatigue of Textile and Short Fiber Reinforced Composites

Fatigue of Textile and Short Fiber Reinforced Composites PDF Author: Valter Carvelli
Publisher: John Wiley & Sons
ISBN: 1119413451
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.

Engineered Interfaces in Fiber Reinforced Composites

Engineered Interfaces in Fiber Reinforced Composites PDF Author: Jang-Kyo Kim
Publisher: Elsevier
ISBN: 0080530974
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume. The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces. The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Heat Transfer in Polymer Composite Materials

Heat Transfer in Polymer Composite Materials PDF Author: Nicolas Boyard
Publisher: John Wiley & Sons
ISBN: 1848217617
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book addresses general information, good practices and examples about thermo-physical properties, thermo-kinetic and thermo-mechanical couplings, instrumentation in thermal science, thermal optimization and infrared radiation.

Damage and Failure of Composite Materials

Damage and Failure of Composite Materials PDF Author: Ramesh Talreja
Publisher: Cambridge University Press
ISBN: 0521819423
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
Bringing together materials mechanics and modelling, this book provides a complete guide to damage mechanics of composite materials for engineers.

Fiber, Matrix, and Interface Properties

Fiber, Matrix, and Interface Properties PDF Author: Christopher J. Spragg
Publisher: ASTM International
ISBN: 080312046X
Category : Composite material
Languages : en
Pages : 206

Get Book Here

Book Description
Emphasizing fiber-matrix adhesion and its characterization in composite materials, reports results from applying the most commonly used test methods, such as fragmentation, pull-out, and indentation, to high-performance composites and their constituents. The 13 papers were presented at a symposium i

Finite Element Modelling of Composite Materials and Structures

Finite Element Modelling of Composite Materials and Structures PDF Author: F L Matthews
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue. This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. Covers important work on finite element analysis of composite material performance Based on material developed for an MSc course at Imperial College, London, UK Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis

American Doctoral Dissertations

American Doctoral Dissertations PDF Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776

Get Book Here

Book Description