Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis PDF Author: Chunyu Liu
Publisher: Springer Spektrum
ISBN: 9783658434212
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
In this book, the author provides a deep study into multiscale and multiphysics modeling of nuclear facilities, underscoring the critical role of uncertainty quantification and sensitivity analysis to ensure the confidence in the numerical results and to identify the system characteristics. Through an in-depth study of the liquid metal cooling system from the TALL-3D loop to the SMDFR core, the research highlights the natural circulation instability, strong coupling effects, perturbation tolerance, and system stability. The culmination of the research is the formulation of an optimized uncertainty-based control scheme, demonstrating its versatility beyond the nuclear domain to other energy sectors. This groundbreaking work not only advances the comprehension and utilization of coupling schemes and uncertainty methodologies in nuclear system modeling but also adeptly bridges the theoretical constructs with tangible application, positioning itself as an indispensable resource for design, safety analysis, and advanced numerical modeling in the broader energy sector.

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis PDF Author: Chunyu Liu
Publisher: Springer Spektrum
ISBN: 9783658434212
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
In this book, the author provides a deep study into multiscale and multiphysics modeling of nuclear facilities, underscoring the critical role of uncertainty quantification and sensitivity analysis to ensure the confidence in the numerical results and to identify the system characteristics. Through an in-depth study of the liquid metal cooling system from the TALL-3D loop to the SMDFR core, the research highlights the natural circulation instability, strong coupling effects, perturbation tolerance, and system stability. The culmination of the research is the formulation of an optimized uncertainty-based control scheme, demonstrating its versatility beyond the nuclear domain to other energy sectors. This groundbreaking work not only advances the comprehension and utilization of coupling schemes and uncertainty methodologies in nuclear system modeling but also adeptly bridges the theoretical constructs with tangible application, positioning itself as an indispensable resource for design, safety analysis, and advanced numerical modeling in the broader energy sector.

Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors PDF Author: Maria Avramova
Publisher: Woodhead Publishing Series in
ISBN: 9780128149546
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover solution verification, the frontier discipline of multi-physics coupling verification, model validation and its applications to single and multi-scale models, and uncertainty quantification. This essential guide will greatly assist engineers, scientists, regulators and students in applying rigorous verification, validation and uncertainty quantification methodologies to the M&S tools used in the industry. The book contains a strong focus on the verification and validation procedures required for the emerging multi-physics M&S tools that have great potential for use in the licensing of new reactors, as well as for power uprating and life extensions of operating reactors. Uniquely--and crucially for nuclear engineers--demonstrates the application of verification, validation and uncertainty methodologies to the modeling and simulation (M&S) of nuclear reactors Equips the reader to develop a rigorously defensible validation process irrespective of the particular M&S tool used Brings the audience up-to-speed on validation methods for traditional M&S tools Extends the discussion to the emerging area of validation of multi-physics and multi-scale nuclear reactor simulations

Uncertainty quantification in nuclear physics

Uncertainty quantification in nuclear physics PDF Author: Maria Piarulli
Publisher: Frontiers Media SA
ISBN: 2832532098
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description


Structures for Nuclear Facilities

Structures for Nuclear Facilities PDF Author: M.Y.H. Bangash
Publisher: Springer Science & Business Media
ISBN: 3642125603
Category : Science
Languages : en
Pages : 796

Get Book Here

Book Description
This book provides a general introduction to the topic of buildings for resistance to the effects of abnormal loadings. The structural design requirements for nuclear facilities are very unique. In no other structural system are extreme loads such as tornadoes, missile and loud interaction, earthquake effects typical in excess of any recorded historical data at a site, and postulated system accident at very low probability range explicitly, considered in design. It covers the whole spectrum of extreme load which has to be considered in the structural design of nuclear facilities and reactor buildings, the safety criteria, the structural design, the analysis of containment. Test case studies are given in a comprehensive treatment. Each major section contains a full explanation which allows the book to be used by students and practicing engineers, particularly those facing formidable task of having to design complicated building structures with unusual boundary conditions.

Optimization-Based Modeling A New Strategy for Predictive Simulations of Multiscale Multiphysics Problems

Optimization-Based Modeling A New Strategy for Predictive Simulations of Multiscale Multiphysics Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 33

Get Book Here

Book Description


Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling

Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description
Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

Uncertainty Quantification in Multiscale Atomistic-Continuum Models

Uncertainty Quantification in Multiscale Atomistic-Continuum Models PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Get Book Here

Book Description


SCALE Code System 6.2.1

SCALE Code System 6.2.1 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2712

Get Book Here

Book Description
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis

High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis PDF Author: Vijay Subramaniam Mahadevan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The modeling of nuclear reactors involves the solution of a multi-physics problem with widely varying time and length scales. This translates mathematically to solving a system of coupled, non-linear, and stiff partial differential equations (PDEs). Multi-physics applications possess the added complexity that most of the solution fields participate in various physics components, potentially yielding spatial and/or temporal coupling errors. This dissertation deals with the verification aspects associated with such a multi-physics code, i.e., the substantiation that the mathematical description of the multi-physics equations are solved correctly (both in time and space). Conventional paradigms used in reactor analysis problems employed to couple various physics components are often non-iterative and can be inconsistent in their treatment of the non-linear terms. This leads to the usage of smaller time steps to maintain stability and accuracy requirements, thereby increasing the overall computational time for simulation. The inconsistencies of these weakly coupled solution methods can be overcome using tighter coupling strategies and yield a better approximation to the coupled non-linear operator, by resolving the dominant spatial and temporal scales involved in the multi-physics simulation. A multi-physics framework, KARMA (K(c)ode for Analysis of Reactor and other Multi-physics Applications), is presented. KARMA uses tight coupling strategies for various physical models based on a Matrix-free Nonlinear-Krylov (MFNK) framework in order to attain high-order spatio-temporal accuracy for all solution fields in amenable wall clock times, for various test problems. The framework also utilizes traditional loosely coupled methods as lower-order solvers, which serve as efficient preconditioners for the tightly coupled solution. Since the software platform employs both lower and higher-order coupling strategies, it can easily be used to test and evaluate different coupling strategies and numerical methods and to compare their efficiency for problems of interest. Multi-physics code verification efforts pertaining to reactor applications are described and associated numerical results obtained using the developed multi-physics framework are provided. The versatility of numerical methods used here for coupled problems and feasibility of general non-linear solvers with appropriate physics-based preconditioners in the KARMA framework offer significantly efficient techniques to solve multi-physics problems in reactor analysis.