Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials PDF Author: Kenneth J.D. MacKenzie
Publisher: Elsevier
ISBN: 0080537103
Category : Science
Languages : en
Pages : 748

Get Book Here

Book Description
Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials PDF Author: Kenneth J.D. MacKenzie
Publisher: Elsevier
ISBN: 0080537103
Category : Science
Languages : en
Pages : 748

Get Book Here

Book Description
Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

Multinuclear Solid-state NMR for the Characterisation of Inorganic Materials

Multinuclear Solid-state NMR for the Characterisation of Inorganic Materials PDF Author: Valerie Ruth Seymour
Publisher:
ISBN:
Category : Chemistry, Inorganic
Languages : en
Pages : 330

Get Book Here

Book Description


Multinuclear Solid-state NMR of Inorganic Materials

Multinuclear Solid-state NMR of Inorganic Materials PDF Author: Kenneth J. D. MacKenzie
Publisher:
ISBN:
Category : Inorganic compounds
Languages : en
Pages : 727

Get Book Here

Book Description


High Resolution Solid-State NMR of Silicate and Zeolites

High Resolution Solid-State NMR of Silicate and Zeolites PDF Author: Günter Engelhardt
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
Covers the dramatic developments in the past decade in the applications of high-resolution NMR to the study of solid materials such as inorganic silicates, aluminosilicates, and in particular, zeolites. Also covers a variety of NMR methods, including conventional FT NMR techniques, used to investigate sorbate-sorbent interactions and the structure of adsorbed molecules. Gives an historical background to the subject and a concise survey of basic principles and methods of high-resolution solid-state NMR. Then covers 29Si NMR of silicate solutions; general aspects of 29Si and 27Al NMR of the silicate and aluminosilicate framework; application of 29Si and 27Al NMR to silicates, aluminosilicates, and zeolites; NMR studies of nuclei other than 29Si and 27Al in zeolites and non-zeolitic silicates; high-resolution studies of adsorbed molecules, and much more.

Quantitative Solid State Nuclear Magnetic Resonance Methods for Inorganic Materials

Quantitative Solid State Nuclear Magnetic Resonance Methods for Inorganic Materials PDF Author: Yamini Sudhakar Avadhut
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Get Book Here

Book Description


Multinuclear Magnetic Resonance in Liquids and Solids - Chemical Applications

Multinuclear Magnetic Resonance in Liquids and Solids - Chemical Applications PDF Author: P. Granger
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
Proceedings of the NATO Advanced Study Institute on Methodological Approach to Multinuclear NMR in Liquids and Solids - Chemical Applications, Maratea, Italy, August 22-September 2, 1988

Solid-State NMR II

Solid-State NMR II PDF Author: Bernhard Blümich
Publisher: Springer
ISBN: 9783540571902
Category : Science
Languages : en
Pages : 236

Get Book Here

Book Description
1. G. Engelhardt, H. Koller, Stuttgart, FRG: 29Si NMR of Inorganic Solids 2. H. Pfeifer, Leizpig, FRG: NMR of Solid Surfaces 3. A. Sebald, Bayreuth, FRG: MAS and CP/MAS NMR of Less Common Spin-1/2 Nuclei 4. C. J{ger, Mainz, FRG: Satellite Transition Spectroscopy of Quadrupolar Nuclei 5. D. Brinkmann, M. Mali, Z}rich, CH: NMR-NQR Studies of High-Temperature Superconductors

Multinuclear Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Studies of Selected Organometallic Compounds

Multinuclear Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Studies of Selected Organometallic Compounds PDF Author: Julian Mark Keates
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Solid State NMR Spectroscopy

Solid State NMR Spectroscopy PDF Author: Melinda J. Duer
Publisher: John Wiley & Sons
ISBN: 0470999381
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
This book is for those familiar with solution-state NMR who are encountering solid-state NMR for the first time. It presents the current understanding and applications of solid-state NMR with a rigorous but readable approach, making it easy for someone who merely wishes to gain an overall impression of the subject without details. This dual requirement is met through careful construction of the material within each chapter. The book is divided into two parts: "Fundamentals" and "Further Applications." The section on Fundamentals contains relatively long chapters that deal with the basic theory and practice of solid-state NMR. The essential differences and extra scope of solid-state NMR over solution-state is dealt with in an introductory chapter. The basic techniques that all chapters rely on are collected into a second chapter to avoid unnecessary repetition later. Remaining chapters in the "Fundamentals" part deal with the major areas of solid-state NMR which all solid-state NMR spectroscopists should know about. Each begins with an overview of the topic that puts the chapter in context. The basic principles upon which the techniques in the chapter rely are explained in a separate section. Each of these chapters exemplifies the principles and techniques with the applications most commonly found in current practice. The "Further Applications" section contains a series of shorter chapters which describe the NMR techniques used in other, more specific areas. The basic principles upon which these techniques rely will be expounded only if not already in the Fundamentals part.

Solid-state Nuclear Magnetic Resonance Spectroscopy of Unreceptive Quadrupolar Nuclei in Inorganic Materials

Solid-state Nuclear Magnetic Resonance Spectroscopy of Unreceptive Quadrupolar Nuclei in Inorganic Materials PDF Author: Andre Sutrisno
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Preparation and characterization of inorganic materials is a crucial practice because understanding the relationship between structure and property is important for improving current performance and developing novel materials. Many metal centers in technologically and industrially important materials are unreceptive low- quadrupolar nuclei (i.e., possessing low natural abundance, low NMR frequencies and large quadrupole moments) and they usually give rise to very broad NMR resonances and low signal-to-noise ratios, making it difficult to acquire their solid-state NMR spectra. This thesis focuses on the characterization of inorganic materials using solid-state NMR (SSNMR) spectroscopy at very high magnetic field of 21.1 T in combination with quantum chemical calculations for computational modeling. In the first part of this thesis, 67Zn and 17O SSNMR studies of several microporous materials were reported. The results of 67Zn SSNMR studies from several important metal-organic frameworks (MOFs), in particular, zeolitic imidazolate frameworks (ZIFs) were presented. 67Zn SSNMR spectroscopy was used to gain structural information regarding the desolvation process in MOF-5. Furthermore, 67Zn SSNMR spectroscopy were utilized to study the host-guest interactions in ZIF-8 loaded with different guest molecules. Static 67Zn SSNMR spectra of microporous zinc phosphites (ZnP) and zinc phosphates (ZnPO) were also acquired at natural abundance. The Gaussian calculation results on a model cluster for ZnP indicate that Zn-O bond length is the most dominant factor to the observed quadrupolar coupling constant (CQ) among other geometric parameters around Zn centres. The local structures of the framework oxygen sites in molecular sieve SAPO-34 were directly probed by several 17O SSNMR techniques. The involvement of water vapor during the SAPO-34 formation in dry-gel conversion (DGC) synthesis was also investigated. In the second part, 91Zr and 33S SSNMR spectra of layered zirconium phosphates (ZrP) and transition metal disulfides (MS2) were obtained. The empirical correlations between NMR parameters and various structural parameters were used for obtaining partial structural information in Li+ and Co(NH3)63+ exchanged layered ZrP. For a series of closely related MS2 materials, the observed differences in the CQ(33S) values were rationalized by considering the difference in their geometrical arrangements. The final part of this thesis featured two examples of SSNMR spectroscopy of exotic nuclei in some interesting inorganic materials. (i) The experimental 135/137Ba SSNMR spectroscopy and theoretical studies of -BBO, an important non-linear optical (NLO) material, indicate that the true crystal structure of -BBO is R3c space group rather than R3. (ii) An ultrahigh field natural abundance 73Ge SSNMR study of two representative germanium containing materials [GeCl2-dioxane and GePh4] demonstrated that acquiring 73Ge wideline NMR spectra of germanium compounds where the Ge experiences an extremely large quadrupolar interaction is feasible and that the small 73Ge chemical shielding anisotropy (CSA) can be directly measured.