Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science PDF Author: Thomas M. Carsey
Publisher: SAGE Publications
ISBN: 1483324923
Category : Social Science
Languages : en
Pages : 304

Get Book Here

Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science PDF Author: Thomas M. Carsey
Publisher: SAGE Publications
ISBN: 1483324923
Category : Social Science
Languages : en
Pages : 304

Get Book Here

Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Monte Carlo Simulation and Resampling

Monte Carlo Simulation and Resampling PDF Author: Thomas M. Carsey
Publisher:
ISBN: 9781483319605
Category : Monte Carlo method
Languages : en
Pages : 293

Get Book Here

Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator 'in repeated samples', the book uses simulation to actually create those repeated samples and summarise the results.

Monte Carlo Simulation

Monte Carlo Simulation PDF Author: Christopher Z. Mooney
Publisher: SAGE
ISBN: 9780803959439
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R PDF Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1441915753
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Nonparametric Monte Carlo Tests and Their Applications

Nonparametric Monte Carlo Tests and Their Applications PDF Author: Li-Xing Zhu
Publisher: Springer Science & Business Media
ISBN: 0387290532
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applications proposes a new Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. When there are no nuisance parameters to be estimated, the nonparametric Monte Carlo test can exactly maintain the significance level, and when nuisance parameters exist, this method can allow the test to asymptotically maintain the level. The author addresses both applied and theoretical aspects of nonparametric Monte Carlo tests. The new methodology has been used for model checking in many fields of statistics, such as multivariate distribution theory, parametric and semiparametric regression models, multivariate regression models, varying-coefficient models with longitudinal data, heteroscedasticity, and homogeneity of covariance matrices. This book will be of interest to both practitioners and researchers investigating goodness-of-fit tests and resampling approximations. Every chapter of the book includes algorithms, simulations, and theoretical deductions. The prerequisites for a full appreciation of the book are a modest knowledge of mathematical statistics and limit theorems in probability/empirical process theory. The less mathematically sophisticated reader will find Chapters 1, 2 and 6 to be a comprehensible introduction on how and where the new method can apply and the rest of the book to be a valuable reference for Monte Carlo test approximation and goodness-of-fit tests. Lixing Zhu is Associate Professor of Statistics at the University of Hong Kong. He is a winner of the Humboldt Research Award at Alexander-von Humboldt Foundation of Germany and an elected Fellow of the Institute of Mathematical Statistics. From the reviews: "These lecture notes discuss several topics in goodness-of-fit testing, a classical area in statistical analysis. ... The mathematical part contains detailed proofs of the theoretical results. Simulation studies illustrate the quality of the Monte Carlo approximation. ... this book constitutes a recommendable contribution to an active area of current research." Winfried Stute for Mathematical Reviews, Issue 2006 "...Overall, this is an interesting book, which gives a nice introduction to this new and specific field of resampling methods." Dongsheng Tu for Biometrics, September 2006

Advanced Markov Chain Monte Carlo Methods

Advanced Markov Chain Monte Carlo Methods PDF Author: Faming Liang
Publisher: John Wiley & Sons
ISBN: 1119956803
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

Monte Carlo Strategies in Scientific Computing

Monte Carlo Strategies in Scientific Computing PDF Author: Jun S. Liu
Publisher: Springer Science & Business Media
ISBN: 0387763716
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

Monte Carlo Methods

Monte Carlo Methods PDF Author: Adrian Barbu
Publisher: Springer Nature
ISBN: 9811329710
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice PDF Author: Arnaud Doucet
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590

Get Book Here

Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Dependent Data in Social Sciences Research

Dependent Data in Social Sciences Research PDF Author: Mark Stemmler
Publisher: Springer Nature
ISBN: 3031563182
Category :
Languages : en
Pages : 785

Get Book Here

Book Description