Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3031600576
Category :
Languages : en
Pages : 475
Book Description
Monotone Nonautonomous Dynamical Systems
Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3031600576
Category :
Languages : en
Pages : 475
Book Description
Publisher: Springer Nature
ISBN: 3031600576
Category :
Languages : en
Pages : 475
Book Description
Nonautonomous Dynamics
Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3030342921
Category : Mathematics
Languages : en
Pages : 449
Book Description
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
Publisher: Springer Nature
ISBN: 3030342921
Category : Mathematics
Languages : en
Pages : 449
Book Description
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
Global Attractors Of Nonautonomous Dissipative Dynamical Systems
Author: David N Cheban
Publisher: World Scientific
ISBN: 9814481866
Category : Mathematics
Languages : en
Pages : 524
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations. Intended for experts in qualitative theory of differential equations, dynamical systems and their applications, this accessible book can also serve as an important resource for senior students and lecturers.
Publisher: World Scientific
ISBN: 9814481866
Category : Mathematics
Languages : en
Pages : 524
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations. Intended for experts in qualitative theory of differential equations, dynamical systems and their applications, this accessible book can also serve as an important resource for senior students and lecturers.
Dynamical Systems in Population Biology
Author: Xiao-Qiang Zhao
Publisher: Springer Science & Business Media
ISBN: 0387217614
Category : Mathematics
Languages : en
Pages : 285
Book Description
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.
Publisher: Springer Science & Business Media
ISBN: 0387217614
Category : Mathematics
Languages : en
Pages : 285
Book Description
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.
Global Attractors of Non-autonomous Dissipative Dynamical Systems
Author: David N. Cheban
Publisher: World Scientific
ISBN: 9812563083
Category : Mathematics
Languages : en
Pages : 524
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.
Publisher: World Scientific
ISBN: 9812563083
Category : Mathematics
Languages : en
Pages : 524
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.
Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition)
Author: David N Cheban
Publisher: World Scientific
ISBN: 9814619841
Category : Mathematics
Languages : en
Pages : 616
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems — the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions — published in the works of author in recent years.
Publisher: World Scientific
ISBN: 9814619841
Category : Mathematics
Languages : en
Pages : 616
Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems — the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions — published in the works of author in recent years.
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
Author: Hal L. Smith
Publisher: American Mathematical Soc.
ISBN: 0821844873
Category : Mathematics
Languages : en
Pages : 186
Book Description
This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.
Publisher: American Mathematical Soc.
ISBN: 0821844873
Category : Mathematics
Languages : en
Pages : 186
Book Description
This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.
Monotone Nonautonomous Dynamical Systems
Author: David Cheban
Publisher: Springer
ISBN: 9783031600562
Category : Mathematics
Languages : en
Pages : 0
Book Description
The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations; 2. Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein’s conjecture, 1975); 3. Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; 4. The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; 5. Asymptotic behavior of monotone nonautonomous dynamical systems with a first integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations.
Publisher: Springer
ISBN: 9783031600562
Category : Mathematics
Languages : en
Pages : 0
Book Description
The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations; 2. Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein’s conjecture, 1975); 3. Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; 4. The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; 5. Asymptotic behavior of monotone nonautonomous dynamical systems with a first integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations.
Metrical Almost Periodicity and Applications to Integro-Differential Equations
Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111234177
Category : Mathematics
Languages : en
Pages : 561
Book Description
The theory of almost periodic functions is a very active field of research for scholars. This research monograph analyzes various classes of multi-dimensional metrically almost periodic type functions with values in complex Banach spaces. We provide many applications of our theoretical results to the abstract Volterra integro-differential inclusions in Banach spaces.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111234177
Category : Mathematics
Languages : en
Pages : 561
Book Description
The theory of almost periodic functions is a very active field of research for scholars. This research monograph analyzes various classes of multi-dimensional metrically almost periodic type functions with values in complex Banach spaces. We provide many applications of our theoretical results to the abstract Volterra integro-differential inclusions in Banach spaces.
Attractors for infinite-dimensional non-autonomous dynamical systems
Author: Alexandre Carvalho
Publisher: Springer Science & Business Media
ISBN: 1461445809
Category : Mathematics
Languages : en
Pages : 434
Book Description
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Publisher: Springer Science & Business Media
ISBN: 1461445809
Category : Mathematics
Languages : en
Pages : 434
Book Description
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.