Molecular Beam Epitaxy Growth and Characterization of Ultra-wide Bandgap Materials and Devices

Molecular Beam Epitaxy Growth and Characterization of Ultra-wide Bandgap Materials and Devices PDF Author: Ryan Lowry Page
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Ultrawide bandgap (UWBG) semiconductors, especially those in the III-nitride family of materials with their exceptional electronic, optical, and thermal properties, will play a highly important role in the next generation of ultraviolet photonic and high power electronic devices. Currently, the performance and utilization of many UWBG materials in device applications is hampered by fundamental materials challenges with growth and doping. This thesis covers the growth and materials properties of two III-nitride UWBG materials, primarily grown by molecular beam epitaxy (MBE). First, hexagonal boron nitride, a two dimensional, layered material with unique optical properties and potential applications in van der Waals-based devices and heterostructures will be discussed. Second, recent work on aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) alloys will be presented.This work begins with an investigation into the high temperature MBE growth of hBN on several substrates. The layers show improved quality over previous reports and are thoroughly characterized. Next, the optical properties of these hBN films, as well as those of bulk doped hBN crystals, are investigated by cryogenic deep UV photoluminescence. Several new emission characteristics are identified and studied in these hBN materials, including carbon-induced luminescence, the direct bandgap transition of monolayer hBN, and single photon emission from hBN defects. Transitioning to the AlGaN platform, the growth of AlN and AlGaN by MBE on high quality single crystalline bulk AlN substrates is outlined and expanded upon, including an analysis of AlGaN doping with Si and Mg. The MBE growth, doping, and electron transport of heavily Si-doped, high Al mole fraction Al- GaN on bulk AlN is investigated, revealing upper practical limits to both Al mole fraction and Si doping density for high conductivity n-type films. In addition to this work on material growth and characterization, several AlGaN-based devices, an optically pumped UV laser and a Schottky barrier diode, will be introduced and discussed. These devices directly benefit from the preceding advances in AlGaN growth and doping. Finally, initial exploratory investigations and results on cubic phase BN as well as boron aluminum nitride alloys will be presented.

Molecular Beam Epitaxy Growth and Characterization of Ultra-wide Bandgap Materials and Devices

Molecular Beam Epitaxy Growth and Characterization of Ultra-wide Bandgap Materials and Devices PDF Author: Ryan Lowry Page
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Ultrawide bandgap (UWBG) semiconductors, especially those in the III-nitride family of materials with their exceptional electronic, optical, and thermal properties, will play a highly important role in the next generation of ultraviolet photonic and high power electronic devices. Currently, the performance and utilization of many UWBG materials in device applications is hampered by fundamental materials challenges with growth and doping. This thesis covers the growth and materials properties of two III-nitride UWBG materials, primarily grown by molecular beam epitaxy (MBE). First, hexagonal boron nitride, a two dimensional, layered material with unique optical properties and potential applications in van der Waals-based devices and heterostructures will be discussed. Second, recent work on aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) alloys will be presented.This work begins with an investigation into the high temperature MBE growth of hBN on several substrates. The layers show improved quality over previous reports and are thoroughly characterized. Next, the optical properties of these hBN films, as well as those of bulk doped hBN crystals, are investigated by cryogenic deep UV photoluminescence. Several new emission characteristics are identified and studied in these hBN materials, including carbon-induced luminescence, the direct bandgap transition of monolayer hBN, and single photon emission from hBN defects. Transitioning to the AlGaN platform, the growth of AlN and AlGaN by MBE on high quality single crystalline bulk AlN substrates is outlined and expanded upon, including an analysis of AlGaN doping with Si and Mg. The MBE growth, doping, and electron transport of heavily Si-doped, high Al mole fraction Al- GaN on bulk AlN is investigated, revealing upper practical limits to both Al mole fraction and Si doping density for high conductivity n-type films. In addition to this work on material growth and characterization, several AlGaN-based devices, an optically pumped UV laser and a Schottky barrier diode, will be introduced and discussed. These devices directly benefit from the preceding advances in AlGaN growth and doping. Finally, initial exploratory investigations and results on cubic phase BN as well as boron aluminum nitride alloys will be presented.

Molecular Beam Epitaxy Growth and Characterization of Wide Bandgap Zn(x)Mg(1-x)Se Semiconductor Materials and Heterostructures for Intersubband Devices

Molecular Beam Epitaxy Growth and Characterization of Wide Bandgap Zn(x)Mg(1-x)Se Semiconductor Materials and Heterostructures for Intersubband Devices PDF Author: Mohammed A. Sohel
Publisher:
ISBN:
Category : Heterostructures
Languages : en
Pages : 292

Get Book Here

Book Description


Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Robin F.C. Farrow
Publisher: Elsevier
ISBN: 0815518404
Category : Technology & Engineering
Languages : en
Pages : 795

Get Book Here

Book Description
In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Brian R. Pamplin
Publisher: Elsevier
ISBN: 1483155331
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semiconductor surface and crystal physics is also considered. This book is comprised of eight chapters and opens with an overview of MBE as a crystal growth technique. The discussion then turns to the deposition of semiconductor superlattices of GaAs by MBE; important factors that must be considered in the design of a MBE system such as flux uniformity, crucible volume, heat shielding, source baffling, and shutters; and control of stoichiometry deviation in MBE growth of compound semiconductors, along with the effects of such deviation on the electronic properties of the grown films. The following chapters focus on the use of MBE techniques for growth of IV-VI optoelectronic devices; for fabrication of integrated optical devices; and for the study of semiconductor surface and crystal physics. The final chapter examines a superlattice consisting of a periodic sequence of ultrathin p- and n-doped semiconductor layers, possibly with intrinsic layers in between. This monograph will be of interest to chemists, physicists, and crystallographers.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Marian A. Herman
Publisher: Springer Science & Business Media
ISBN: 3642970982
Category : Technology & Engineering
Languages : en
Pages : 394

Get Book Here

Book Description
This first-ever monograph on molecular beam epitaxy (MBE) gives a comprehensive presentation of recent developments in MBE, as applied to crystallization of thin films and device structures of different semiconductor materials. MBE is a high-vacuum technology characterized by relatively low growth temperature, ability to cease or initiate growth abruptly, smoothing of grown surfaces and interfaces on an atomic scale, and the unique facility for in situ analysis of the structural parameters of the growing film. The excellent exploitation parameters of such MBE-produced devices as quantum-well lasers, high electron mobility transistors, and superlattice avalanche photodiodes have caused this technology to be intensively developed. The main text of the book is divided into three parts. The first presents and discusses the more important problems concerning MBE equipment. The second discusses the physico-chemical aspects of the crystallization processes of different materials (mainly semiconductors) and device structures. The third part describes the characterization methods which link the physical properties of the grown film or structures with the technological parameters of the crystallization procedure. Latest achievements in the field are emphasized, such as solid source MBE, including silicon MBE, gas source MBE, especially metalorganic MBE, phase-locked epitaxy and atomic-layer epitaxy, photoassisted molecular layer epitaxy and migration enhanced epitaxy.

Epitaxial Growth, Characterization and Application of Novel Wide Bandgap Oxide Semiconductors

Epitaxial Growth, Characterization and Application of Novel Wide Bandgap Oxide Semiconductors PDF Author: Jeremy West Mares
Publisher:
ISBN:
Category : Molecular beam epitaxy
Languages : en
Pages : 136

Get Book Here

Book Description
In this work, a body of knowledge is presented which pertains to the growth, characterization and exploitation of high quality, novel II-IV oxide epitaxial films and structures grown by plasma-assisted molecular beam epitaxy. The two compounds of primary interest within this research are the ternary films Ni[subscript x]Mg1[subscript x]O and Zn[subscript x]Mg1[subscript x]0 and the investigation focuses predominantly on the realization, assessment and implementation of these two oxides as optoelectronic materials. The functioning hypothesis for this largely experimental effort has been that these cubic ternary oxides can be exploited--and possibly even juxtaposed--to realize novel wide band gap optoelectronic technologies. The results of the research conducted presented herein overwhelmingly support this hypothesis in that they confirm the possibility to grow these films with sufficient quality by this technique, as conjectured. Ni[subscript x]Mg1−[subscript x]O films with varying Nickel concentrations ranging from x = 0 to x = 1 have been grown on lattice matched MgO substrates (lattice mismatch [epsilon][less than]0.01) and characterized structurally, morphologically, optically and electrically. Similarly, cubic Zn[subscript x]Mg1−[subscript x]0 films with Zinc concentrations ranging from x = 0 to x[almost equal to]0.53, as limited by phase segregation, have also been grown and characterized. Photoconductive devices have been designed and fabricated from these films and characterized. Successfully engineered films in both categories exhibit the desired deep ultraviolet photoresponse and therefore verify the hypothesis. While the culminating work of interest here focuses on the two compounds discussed above, the investigation has also involved the characterization or exploitation of related films including hexagonal phase Zn[subscript x]Mg1−[subscript x]O, ZnO, Cd[subscript x]Zn1−[subscript x]O and hybrid structures based on these compounds used in conjunction with GaN. These works were critical precursors to the growth of cubic oxides, however, and are closely relevant. Viewed in its entirety, this document can therefore be considered a multifaceted interrogation of several novel oxide compounds and structures, both cubic and wurtzite in structure. The conclusions of the research can be stated succinctly as a quantifiably successful effort to validate the use of these compounds and structures for wide bandgap optoelectronic technologies.

Molecular Beam Epitaxy Growth and Characterization of ZnO-based Layers and Heterostructures

Molecular Beam Epitaxy Growth and Characterization of ZnO-based Layers and Heterostructures PDF Author: Abdelhamid Abdelrehim Mahmoud Elshaer
Publisher: Cuvillier Verlag
ISBN: 386727701X
Category :
Languages : en
Pages : 143

Get Book Here

Book Description


Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790

Get Book Here

Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and ‘how to’ on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. Condenses the fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community

Molecular Beam Heteroepitaxial Growth and Characterization of Wide Band Gap Semiconductor Films and Devices

Molecular Beam Heteroepitaxial Growth and Characterization of Wide Band Gap Semiconductor Films and Devices PDF Author: Eric C. Piquette
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 344

Get Book Here

Book Description


Silicon Molecular Beam Epitaxy

Silicon Molecular Beam Epitaxy PDF Author: Erich Kasper
Publisher:
ISBN:
Category : Crystal growth
Languages : en
Pages : 388

Get Book Here

Book Description
This two-volume work covers recent developments in the single crystal growth, by molecular beam epitaxy, of materials compatible with silicon, their physical characterization, and device application. Papers are included on surface physics and related vacuum synthesis techniques such as solid phase epitaxy and ion beam epitaxy. A selection of contents: Volume I. SiGe Superlattices. SiGe strained layer superlattices (G. Abstreiter). Optical properties of strained GeSi superlattices grown on (001)Ge (T.P. Pearsall et al.). Growth and characterization of SiGe atomic layer superlattices (J.-M. Baribeau et al.). Optical properties of perfect and imperfect SiGe superlattices (K.B. Wong et al.). Confined phonons in stained short-period (001) Si/Ge superlattices (W. Bacsa et al.). Calculation of energies and Raman intensities of confined phonons in SiGe strained layer superlattices (J. White et al.). Rippled surface topography observed on silicon molecular beam epitaxial and vapour phase epitaxial layers (A.J. Pidduck et al.). The 698 meV optical band in MBE silicon (N. de Mello et al.). Silicon Growth Doping. Dopant incorporation kinetics and abrupt profiles during silicon molecular beam epitaxy (J.-E. Sundgren et al.). Influence of substrate orientation on surface segregation process in silicon-MBE (K. Nakagawa et al.). Growth and transport properties of SimSb1 (H. Jorke, H. Kibbel). Author Index. Volume. II. In-situ electron microscope studies of lattice mismatch relaxation in GexSi1-x/Si heterostructures (R. Hull et al.). Heterogeneous nucleation sources in molecular beam epitaxy-grown GexSi1-x/Si strained layer superlattices (D.D. Perovic et al.). Silicon Growth. Hydrogen-terminated silicon substrates for low-temperature molecular beam epitaxy (P.J. Grunthaner et al.). Interaction of structure with kinetics in Si(001) homoepitaxy (S. Clarke et al.). Surface step structure of a lens-shaped Si(001) vicinal substrate (K. Sakamoto et al.). Photoluminescence characterization of molecular beam epitaxial silicon (E.C. Lightowlers et al.). Doping. Boron doping using compound source (T. Tatsumi). P-type delta doping in silicon MBE (N.L. Mattey et al.). Modulation-doped superlattices with delta layers in silicon (H.P. Zeindell et al.). Steep doping profiles obtained by low-energy implantation of arsenic in silicon MBE layers (N. Djebbar et al.). Alternative Growth Methods. Limited reaction processing: growth of Si/Si1-xGex for heterojunction bipolar transistor applications (J.L. Hoyt et al.). High gain SiGe heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition (M.L. Green et al.). Epitaxial growth of single-crystalline Si1-xGex on Si(100) by ion beam sputter deposition (F. Meyer et al.). Phosphorus gas doping in gas source silicon-MBE (H. Hirayama, T. Tatsumi). Devices. Narrow band gap base heterojunction bipolar transistors using SiGe alloys (S.S. Iyer et al.). Silicon-based millimeter-wave integrated circuits (J-F. Luy). Performance and processing line integration of a silicon molecular beam epitaxy system (A.A. van Gorkum et al.). Silicides. Reflection high energy electron diffraction study of Cosi2/Si multilayer structures (Q. Ye at al.). Epitaxy of metal silicides (H. von Kanel et al.). Epitaxial growth of ErSi2 on (111)si (D. Loretto et al.). Other Material Systems. Oxygen-doped and nitrogen-doped silicon films prepared by molecular beam epitaxy (M. Tabe et al.). Properties of diamond structure SnGe films grown by molecular beam epitaxy (A. Harwit et al.). Si-MBE: Prospects and Challenges. Prospects and challenges for molecular beam epitaxy in silicon very-large-scale integration (W. Eccleston). Prospects and challenges for SiGe strained-layer epitaxy (T.P. Pearsall). Author Index.