Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Moduli Spaces of Riemann Surfaces
Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Moduli Spaces of Riemann Surfaces
Author: Benson Farb
Publisher:
ISBN: 9781470409944
Category : Moduli theory
Languages : en
Pages : 356
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class g.
Publisher:
ISBN: 9781470409944
Category : Moduli theory
Languages : en
Pages : 356
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class g.
An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
Author: Martin Schlichenmaier
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 172
Book Description
This lecture is intended as an introduction to the mathematical concepts of algebraic and analytic geometry. It is addressed primarily to theoretical physicists, in particular those working in string theories. The author gives a very clear exposition of the main theorems, introducing the necessary concepts by lucid examples, and shows how to work with the methods of algebraic geometry. As an example he presents the Krichever-Novikov construction of algebras of Virasaro type. The book will be welcomed by many researchers as an overview of an important branch of mathematics, a collection of useful formulae and an excellent guide to the more extensive mathematical literature.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 172
Book Description
This lecture is intended as an introduction to the mathematical concepts of algebraic and analytic geometry. It is addressed primarily to theoretical physicists, in particular those working in string theories. The author gives a very clear exposition of the main theorems, introducing the necessary concepts by lucid examples, and shows how to work with the methods of algebraic geometry. As an example he presents the Krichever-Novikov construction of algebras of Virasaro type. The book will be welcomed by many researchers as an overview of an important branch of mathematics, a collection of useful formulae and an excellent guide to the more extensive mathematical literature.
Geometry of Riemann Surfaces and Teichmüller Spaces
Author: M. Seppälä
Publisher: Elsevier
ISBN: 0080872808
Category : Mathematics
Languages : en
Pages : 269
Book Description
The moduli problem is to describe the structure of the spaceof isomorphism classes of Riemann surfaces of a giventopological type. This space is known as the modulispace and has been at the center of pure mathematics formore than a hundred years. In spite of its age, this fieldstill attracts a lot of attention, the smooth compact Riemannsurfaces being simply complex projective algebraic curves.Therefore the moduli space of compact Riemann surfaces is alsothe moduli space of complex algebraic curves. This space lieson the intersection of many fields of mathematics and may bestudied from many different points of view.The aim of thismonograph is to present information about the structure of themoduli space using as concrete and elementary methods aspossible. This simple approach leads to a rich theory andopens a new way of treating the moduli problem, putting newlife into classical methods that were used in the study ofmoduli problems in the 1920s.
Publisher: Elsevier
ISBN: 0080872808
Category : Mathematics
Languages : en
Pages : 269
Book Description
The moduli problem is to describe the structure of the spaceof isomorphism classes of Riemann surfaces of a giventopological type. This space is known as the modulispace and has been at the center of pure mathematics formore than a hundred years. In spite of its age, this fieldstill attracts a lot of attention, the smooth compact Riemannsurfaces being simply complex projective algebraic curves.Therefore the moduli space of compact Riemann surfaces is alsothe moduli space of complex algebraic curves. This space lieson the intersection of many fields of mathematics and may bestudied from many different points of view.The aim of thismonograph is to present information about the structure of themoduli space using as concrete and elementary methods aspossible. This simple approach leads to a rich theory andopens a new way of treating the moduli problem, putting newlife into classical methods that were used in the study ofmoduli problems in the 1920s.
Introduction to Moduli Spaces of Riemann Surfaces and Tropical Curves
Author: Lizhen Ji
Publisher:
ISBN: 9787040474190
Category : Geometry, Algebraic
Languages : en
Pages : 221
Book Description
Publisher:
ISBN: 9787040474190
Category : Geometry, Algebraic
Languages : en
Pages : 221
Book Description
The Moduli Space of Curves
Author: Robert H. Dijkgraaf
Publisher: Springer Science & Business Media
ISBN: 1461242649
Category : Mathematics
Languages : en
Pages : 570
Book Description
The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
Publisher: Springer Science & Business Media
ISBN: 1461242649
Category : Mathematics
Languages : en
Pages : 570
Book Description
The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
Algebraic Curves and Riemann Surfaces
Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Geometry of Riemann Surfaces
Author: William J. Harvey
Publisher: Cambridge University Press
ISBN: 0521733073
Category : Mathematics
Languages : en
Pages : 416
Book Description
Original research and expert surveys on Riemann surfaces.
Publisher: Cambridge University Press
ISBN: 0521733073
Category : Mathematics
Languages : en
Pages : 416
Book Description
Original research and expert surveys on Riemann surfaces.
Moduli of Curves
Author: Joe Harris
Publisher: Springer Science & Business Media
ISBN: 0387227377
Category : Mathematics
Languages : en
Pages : 381
Book Description
A guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.
Publisher: Springer Science & Business Media
ISBN: 0387227377
Category : Mathematics
Languages : en
Pages : 381
Book Description
A guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.
Families of Riemann Surfaces and Weil-Petersson Geometry
Author: Scott A. Wolpert
Publisher: American Mathematical Soc.
ISBN: 0821849867
Category : Mathematics
Languages : en
Pages : 130
Book Description
Provides a generally self-contained course for graduate students and postgraduates on deformations of hyperbolic surfaces and the geometry of the Weil-Petersson metric. It also offers an update for researchers; material not otherwise found in a single reference is included; and aunified approach is provided for an array of results.
Publisher: American Mathematical Soc.
ISBN: 0821849867
Category : Mathematics
Languages : en
Pages : 130
Book Description
Provides a generally self-contained course for graduate students and postgraduates on deformations of hyperbolic surfaces and the geometry of the Weil-Petersson metric. It also offers an update for researchers; material not otherwise found in a single reference is included; and aunified approach is provided for an array of results.