Author: Seetha, Hari
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Modern Technologies for Big Data Classification and Clustering
Author: Seetha, Hari
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Machine Learning Models and Algorithms for Big Data Classification
Author: Shan Suthaharan
Publisher: Springer
ISBN: 1489976418
Category : Business & Economics
Languages : en
Pages : 364
Book Description
This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Publisher: Springer
ISBN: 1489976418
Category : Business & Economics
Languages : en
Pages : 364
Book Description
This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications
Author: Garima Mathur
Publisher: Springer Nature
ISBN: 9811663327
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
Publisher: Springer Nature
ISBN: 9811663327
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
Data Visualization
Author: S. Margret Anouncia
Publisher: Springer Nature
ISBN: 9811522820
Category : Computers
Languages : en
Pages : 188
Book Description
This book discusses the recent trends and developments in the fields of information processing and information visualization. In view of the increasing amount of data, there is a need to develop visualization techniques to make that data easily understandable. Presenting such approaches from various disciplines, this book serves as a useful resource for graduates.
Publisher: Springer Nature
ISBN: 9811522820
Category : Computers
Languages : en
Pages : 188
Book Description
This book discusses the recent trends and developments in the fields of information processing and information visualization. In view of the increasing amount of data, there is a need to develop visualization techniques to make that data easily understandable. Presenting such approaches from various disciplines, this book serves as a useful resource for graduates.
Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Proceedings of International Conference on Computational Intelligence and Data Engineering
Author: Nabendu Chaki
Publisher: Springer Nature
ISBN: 9811671826
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
This book covers various topics, including collective intelligence, intelligent transportation systems, fuzzy systems, Bayesian network, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence, and speech processing. This book is a collection of high-quality research work on cutting-edge technologies and the most-happening areas of computational intelligence and data engineering. It includes selected papers from the International Conference on Computational Intelligence and Data Engineering (ICCIDE 2021).
Publisher: Springer Nature
ISBN: 9811671826
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
This book covers various topics, including collective intelligence, intelligent transportation systems, fuzzy systems, Bayesian network, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence, and speech processing. This book is a collection of high-quality research work on cutting-edge technologies and the most-happening areas of computational intelligence and data engineering. It includes selected papers from the International Conference on Computational Intelligence and Data Engineering (ICCIDE 2021).
Big Data Technologies and Applications
Author: Borko Furht
Publisher: Springer
ISBN: 3319445502
Category : Computers
Languages : en
Pages : 405
Book Description
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Publisher: Springer
ISBN: 3319445502
Category : Computers
Languages : en
Pages : 405
Book Description
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Computational Science and Its Applications - ICCSA 2014
Author: Beniamino Murgante
Publisher: Springer
ISBN: 3319091565
Category : Computers
Languages : en
Pages : 840
Book Description
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.
Publisher: Springer
ISBN: 3319091565
Category : Computers
Languages : en
Pages : 840
Book Description
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.
Modern Management Based on Big Data III
Author: A.J. Tallón-Ballesteros
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 3030586693
Category : Technology & Engineering
Languages : en
Pages : 893
Book Description
This book presents the proceedings of the 6th International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI2020), which took place in Cairo, Egypt, from October 19 to 21, 2020. This international and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: Intelligent Systems, Deep Learning Technology, Document and Sentiment Analysis, Blockchain and Cyber Physical System, Health Informatics and AI against COVID-19, Data Mining, Power and Control Systems, Business Intelligence, Social Media and Digital Transformation, Robotic, Control Design, and Smart Systems.
Publisher: Springer Nature
ISBN: 3030586693
Category : Technology & Engineering
Languages : en
Pages : 893
Book Description
This book presents the proceedings of the 6th International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI2020), which took place in Cairo, Egypt, from October 19 to 21, 2020. This international and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: Intelligent Systems, Deep Learning Technology, Document and Sentiment Analysis, Blockchain and Cyber Physical System, Health Informatics and AI against COVID-19, Data Mining, Power and Control Systems, Business Intelligence, Social Media and Digital Transformation, Robotic, Control Design, and Smart Systems.