Author: Seetha, Hari
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Modern Technologies for Big Data Classification and Clustering
Author: Seetha, Hari
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Publisher: IGI Global
ISBN: 1522528067
Category : Computers
Languages : en
Pages : 381
Book Description
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
Machine Learning Models and Algorithms for Big Data Classification
Author: Shan Suthaharan
Publisher: Springer
ISBN: 1489976418
Category : Business & Economics
Languages : en
Pages : 364
Book Description
This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Publisher: Springer
ISBN: 1489976418
Category : Business & Economics
Languages : en
Pages : 364
Book Description
This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Big Data Technologies and Applications
Author: Borko Furht
Publisher: Springer
ISBN: 3319445502
Category : Computers
Languages : en
Pages : 405
Book Description
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Publisher: Springer
ISBN: 3319445502
Category : Computers
Languages : en
Pages : 405
Book Description
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Computational Science and Its Applications - ICCSA 2014
Author: Beniamino Murgante
Publisher: Springer
ISBN: 3319091565
Category : Computers
Languages : en
Pages : 840
Book Description
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.
Publisher: Springer
ISBN: 3319091565
Category : Computers
Languages : en
Pages : 840
Book Description
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.
Knowledge Graphs and Big Data Processing
Author: Valentina Janev
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212
Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212
Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
MODERN SCIENTIFIC SPACE AND LEARNING IN SPECIAL CONDITIONS
Author: European Conference
Publisher: Bookmundo
ISBN: 9403688947
Category : Science
Languages : en
Pages : 866
Book Description
No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required. Collection of scientific articles published is the scientific and practical publication, which contains scientific articles of students, graduate students, Candidates and Doctors of Sciences, research workers and practitioners from Europe, Ukraine, Russia and from neighboring countries and beyond. The articles contain the study, reflecting the processes and changes in the structure of modern science. The collection of scientific articles is for students, postgraduate students, doctoral candidates, teachers, researchers, practitioners and people interested in the trends of modern science development.
Publisher: Bookmundo
ISBN: 9403688947
Category : Science
Languages : en
Pages : 866
Book Description
No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required. Collection of scientific articles published is the scientific and practical publication, which contains scientific articles of students, graduate students, Candidates and Doctors of Sciences, research workers and practitioners from Europe, Ukraine, Russia and from neighboring countries and beyond. The articles contain the study, reflecting the processes and changes in the structure of modern science. The collection of scientific articles is for students, postgraduate students, doctoral candidates, teachers, researchers, practitioners and people interested in the trends of modern science development.
Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications
Author: Garima Mathur
Publisher: Springer Nature
ISBN: 9811663327
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
Publisher: Springer Nature
ISBN: 9811663327
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This book gathers outstanding research papers presented in the 2nd International Conference on Artificial Intelligence: Advances and Application (ICAIAA 2021), held in Poornima College of Engineering, Jaipur, India during 27-28 March 2021. This book covers research works carried out by various students such as bachelor, master and doctoral scholars, faculty and industry persons in the area of artificial intelligence, machine learning, deep learning applications in healthcare, agriculture, business, security, etc. It will also cover research in core concepts of computer networks, intelligent system design and deployment, real time systems, WSN, sensors and sensor nodes, SDN, NFV, etc.
Modern Management Based on Big Data III
Author: A.J. Tallón-Ballesteros
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
Advanced Machine Learning Technologies and Applications
Author: Aboul-Ella Hassanien
Publisher: Springer Nature
ISBN: 3030697177
Category : Technology & Engineering
Languages : en
Pages : 1144
Book Description
This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Publisher: Springer Nature
ISBN: 3030697177
Category : Technology & Engineering
Languages : en
Pages : 1144
Book Description
This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more