Modern Numerical Methods for Ordinary Differential Equations

Modern Numerical Methods for Ordinary Differential Equations PDF Author: G. Hall
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 358

Get Book Here

Book Description

Modern Numerical Methods for Ordinary Differential Equations

Modern Numerical Methods for Ordinary Differential Equations PDF Author: G. Hall
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 358

Get Book Here

Book Description


Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: J. C. Butcher
Publisher: John Wiley & Sons
ISBN: 0470868260
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: David F. Griffiths
Publisher: Springer Science & Business Media
ISBN: 0857291483
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations PDF Author: J.R. Dormand
Publisher: CRC Press
ISBN: 9780849394331
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations

Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 0898714125
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
This book contains all the material necessary for a course on the numerical solution of differential equations.

General Linear Methods for Ordinary Differential Equations

General Linear Methods for Ordinary Differential Equations PDF Author: Zdzislaw Jackiewicz
Publisher: John Wiley & Sons
ISBN: 0470522151
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.

Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 354078862X
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.

Classical and Modern Numerical Analysis

Classical and Modern Numerical Analysis PDF Author: Azmy S. Ackleh
Publisher: CRC Press
ISBN: 1420091581
Category : Mathematics
Languages : en
Pages : 628

Get Book Here

Book Description
Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis.The text covers the main areas o

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Scientific Computing with Ordinary Differential Equations

Scientific Computing with Ordinary Differential Equations PDF Author: Peter Deuflhard
Publisher: Springer Science & Business Media
ISBN: 0387215824
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area