Models of Horizontal Eye Movements, Part II

Models of Horizontal Eye Movements, Part II PDF Author: John Enderle
Publisher: Springer Nature
ISBN: 3031016432
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The control of saccades is initiated by the superior colliculus and terminated by the cerebellar fastigial nucleus, and involves a complex neural circuit in the mid brain. This book is the second part of a book series on models of horizontal eye movements. Table of Contents: 2009 Linear Homeomorphic Saccadic Eye Movement Model and Post-Saccade Behavior: Dynamic and Glissadic Overshoot / Neural Network for the Saccade Controller

Models of Horizontal Eye Movements, Part II

Models of Horizontal Eye Movements, Part II PDF Author: John Enderle
Publisher: Springer Nature
ISBN: 3031016432
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The control of saccades is initiated by the superior colliculus and terminated by the cerebellar fastigial nucleus, and involves a complex neural circuit in the mid brain. This book is the second part of a book series on models of horizontal eye movements. Table of Contents: 2009 Linear Homeomorphic Saccadic Eye Movement Model and Post-Saccade Behavior: Dynamic and Glissadic Overshoot / Neural Network for the Saccade Controller

Models of Horizontal Eye Movements, Part I

Models of Horizontal Eye Movements, Part I PDF Author: John Enderle
Publisher: Springer Nature
ISBN: 3031016424
Category : Technology & Engineering
Languages : en
Pages : 151

Get Book Here

Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, early models of saccades and smooth pursuit are presented. The smooth pursuit system allows tracking of a slow moving target to maintain its position on the fovea. Models of the smooth pursuit have been developed using systems control theory, all involving a negative feedback control system that includes a time delay, controller and plant in the forward loop, with unity feedback. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The oculomotor plant consists of three muscle pairs and the eyeball. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4$^{th}$ order oculomotor plant model. The work presented here is not an exhaustive coverage of the field, but focused on the interests of the author. In Part II, a state-of-art model of the saccade system is presented, including a neural network that controls the system. Table of Contents: Introduction / Smooth Pursuit Models / Early Models of the Horizontal Saccadic Eye Movement System / Velocity and Acceleration Estimation / 1995 Linear Homeomorphic Saccadic Eye Movement Model

Models of Horizontal Eye Movements, Part II

Models of Horizontal Eye Movements, Part II PDF Author: John Enderle
Publisher: Springer
ISBN: 9783031005152
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The control of saccades is initiated by the superior colliculus and terminated by the cerebellar fastigial nucleus, and involves a complex neural circuit in the mid brain. This book is the second part of a book series on models of horizontal eye movements. Table of Contents: 2009 Linear Homeomorphic Saccadic Eye Movement Model and Post-Saccade Behavior: Dynamic and Glissadic Overshoot / Neural Network for the Saccade Controller

Health Care Engineering Part II

Health Care Engineering Part II PDF Author: Monique Frize
Publisher: Springer Nature
ISBN: 3031016580
Category : Technology & Engineering
Languages : en
Pages : 69

Get Book Here

Book Description
Part II of Health Care Engineering begins with statistics on the occurrence of medical errors and adverse events, and includes some technological solutions. A chapter on electronic medical records follows. The knowledge management process divided into four steps is described; this includes a discussion on data acquisition, storage, and retrieval. The next two chapters discuss the other three steps of the knowledge management process (knowledge discovery, knowledge translation, knowledge integration and sharing). The last chapter briefly discusses usability studies and clinical trials. This two-part book consolidates material that supports courses on technology development and management issues in health care institutions. It can be useful for anyone involved in design, development, or research, whether in industry, hospitals, or government.

Capstone Design Courses, Part II

Capstone Design Courses, Part II PDF Author: Jay Goldberg
Publisher: Springer Nature
ISBN: 3031016521
Category : Technology & Engineering
Languages : en
Pages : 83

Get Book Here

Book Description
The biomedical engineering senior capstone design course is probably the most important course taken by undergraduate biomedical engineering students. It provides them with the opportunity to apply what they have learned in previous years, develop their communication, teamwork, project management, and design skills, and learn about the product development process. It prepares students for professional practice and serves as a preview of what it will be like to work as a biomedical engineer. The capstone design experience can change the way engineering students think about technology, themselves, society, and the world around them. It can make them aware of their potential to make a positive contribution to healthcare throughout the world and generate excitement for, and pride in, the engineering profession. Ideas for how to organize, structure, and manage a senior capstone design course for biomedical and other engineering students are presented here. These ideas will be helpful to faculty who are creating a new design course, expanding a current design program, or just looking for some ideas for improving an existing course. The better we can make these courses, the more "industry ready" our students will be, and the better prepared they will be for meaningful, successful careers in biomedical engineering. This book is the second part of a series covering Capstone Design Courses for biomedical engineers. Part I is available online here and in print (ISBN 9781598292923) and covers the following topics: Purpose, Goals, and Benefits; Designing a Course to Meet Student Needs; Enhancing the Capstone Design Courses; Meeting the Changing Needs of Future Engineers. Table of Contents: The Myth of the "Industry-Ready" Engineer / Recent Trends and the Current State of Capstone Design / Preparing Students for Capstone Design / Helping Students Recognize the Value of Capstone Design Courses / Developing Teamwork Skills / Incorporating Design Controls / Learning to Identify Problems, Unmet Needs, and New Product Opportunities / Design Verification and Validation / Liability Issues with Assistive Technology Projects / Standards in Capstone Design Courses and the Engineering Curriculum / Design Transfer and Design for Manufacturability / Learning from other Engineering Disciplines: Capstone Design Conferences / Maintaining a Relevant, Up-to-Date Capstone Design Course / Active Learning in Capstone Design Courses / Showcasing Student Projects: National Student Design Competitions / Managing Student Expectations of the "Real World" / Career Management and Professional Development / Conclusion

Health Care Engineering Part I

Health Care Engineering Part I PDF Author: Monique Frize
Publisher: Springer Nature
ISBN: 3031016572
Category : Technology & Engineering
Languages : en
Pages : 79

Get Book Here

Book Description
The first chapter describes the health care delivery systems in Canada and in the U.S. This is followed by examples of various approaches used to measure physiological variables in humans, either for the purpose of diagnosis or monitoring potential disease conditions; a brief description of sensor technologies is included. The function and role of the clinical engineer in managing medical technologies in industrialized and in developing countries are presented. This is followed by a chapter on patient safety (mainly electrical safety and electromagnetic interference); it includes a section on how to minimize liability and how to develop a quality assurance program for technology management. The next chapter discusses applications of telemedicine, including technical, social, and ethical issues. The last chapter presents a discussion on the impact of technology on health care and the technology assessment process. This two-part book consolidates material that supports courses on technology development and management issues in health care institutions. It can be useful for anyone involved in design, development, or research, whether in industry, hospitals, or government.

Capstone Design Courses, Part Two

Capstone Design Courses, Part Two PDF Author: Jay Goldberg
Publisher: Morgan & Claypool Publishers
ISBN: 1627050442
Category : Technology & Engineering
Languages : en
Pages : 97

Get Book Here

Book Description
The biomedical engineering senior capstone design course is probably the most important course taken by undergraduate biomedical engineering students. It provides them with the opportunity to apply what they have learned in previous years, develop their communication, teamwork, project management, and design skills, and learn about the product development process. It prepares students for professional practice and serves as a preview of what it will be like to work as a biomedical engineer. The capstone design experience can change the way engineering students think about technology, themselves, society, and the world around them. It can make them aware of their potential to make a positive contribution to healthcare throughout the world and generate excitement for, and pride in, the engineering profession. Ideas for how to organize, structure, and manage a senior capstone design course for biomedical and other engineering students are presented here. These ideas will be helpful to faculty who are creating a new design course, expanding a current design program, or just looking for some ideas for improving an existing course. The better we can make these courses, the more "industry ready" our students will be, and the better prepared they will be for meaningful, successful careers in biomedical engineering. This book is the second part of a series covering Capstone Design Courses for biomedical engineers. Part I is available online here and in print (ISBN 9781598292923) and covers the following topics: Purpose, Goals, and Benefits; Designing a Course to Meet Student Needs; Enhancing the Capstone Design Courses; Meeting the Changing Needs of Future Engineers. Table of Contents: The Myth of the "Industry-Ready" Engineer / Recent Trends and the Current State of Capstone Design / Preparing Students for Capstone Design / Helping Students Recognize the Value of Capstone Design Courses / Developing Teamwork Skills / Incorporating Design Controls / Learning to Identify Problems, Unmet Needs, and New Product Opportunities / Design Verification and Validation / Liability Issues with Assistive Technology Projects / Standards in Capstone Design Courses and the Engineering Curriculum / Design Transfer and Design for Manufacturability / Learning from other Engineering Disciplines: Capstone Design Conferences / Maintaining a Relevant, Up-to-Date Capstone Design Course / Active Learning in Capstone Design Courses / Showcasing Student Projects: National Student Design Competitions / Managing Student Expectations of the "Real World" / Career Management and Professional Development / Conclusion

Models of Horizontal Eye Movements

Models of Horizontal Eye Movements PDF Author: John D. Enderle
Publisher: Morgan & Claypool Publishers
ISBN: 1608452328
Category : Computers
Languages : en
Pages : 164

Get Book Here

Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, early models of saccades and smooth pursuit are presented. The smooth pursuit system allows tracking of a slow moving target to maintain its position on the fovea. Models of the smooth pursuit have been developed using systems control theory, all involving a negative feedback control system that includes a time delay, controller and plant in the forward loop, with unity feedback. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The oculomotor plant consists of three muscle pairs and the eyeball. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4th order oculomotor plant model. The work presented here is not an exhaustive coverage of the field, but focused on the interests of the author. In Part II, a state-of-art model of the saccade system is presented, including a neural network that controls the system. Table of Contents: Introduction / Smooth Pursuit Models / Early Models of the Horizontal Saccadic Eye Movement System / Velocity and Acceleration Estimation / 1995 Linear Homeomorphic Saccadic Eye Movement Model

Digital Image Processing for Ophthalmology

Digital Image Processing for Ophthalmology PDF Author: Xiaolu Zhu
Publisher: Springer Nature
ISBN: 3031016491
Category : Technology & Engineering
Languages : en
Pages : 95

Get Book Here

Book Description
Fundus images of the retina are color images of the eye taken by specially designed digital cameras. Ophthalmologists rely on fundus images to diagnose various diseases that affect the eye, such as diabetic retinopathy and retinopathy of prematurity. A crucial preliminary step in the analysis of retinal images is the identification and localization of important anatomical structures, such as the optic nerve head (ONH), the macula, and the major vascular arcades. Identification of the ONH is an important initial step in the detection and analysis of the anatomical structures and pathological features in the retina. Different types of retinal pathology may be detected and analyzed via the application of appropriately designed techniques of digital image processing and pattern recognition. Computer-aided analysis of retinal images has the potential to facilitate quantitative and objective analysis of retinal lesions and abnormalities. Accurate identification and localization of retinal features and lesions could contribute to improved diagnosis, treatment, and management of retinopathy. This book presents an introduction to diagnostic imaging of the retina and an overview of image processing techniques for ophthalmology. In particular, digital image processing algorithms and pattern analysis techniques for the detection of the ONH are described. In fundus images, the ONH usually appears as a bright region, white or yellow in color, and is indicated as the convergent area of the network of blood vessels. Use of the geometrical and intensity characteristics of the ONH, as well as the property that the ONH represents the location of entrance of the blood vessels and the optic nerve into the retina, is demonstrated in developing the methods. The image processing techniques described in the book include morphological filters for preprocessing fundus images, filters for edge detection, the Hough transform for the detection of lines and circles, Gabor filters to detect the blood vessels, and phase portrait analysis for the detection of convergent or node-like patterns. Illustrations of application of the methods to fundus images from two publicly available databases are presented, in terms of locating the center and the boundary of the ONH. Methods for quantitative evaluation of the results of detection of the ONH using measures of overlap and free-response receiver operating characteristics are also described. Table of Contents: Introduction / Computer-aided Analysis of Images of the Retina / Detection of Geometrical Patterns / Datasets and Experimental Setup / Detection of the\\Optic Nerve Head\\Using the Hough Transform / Detection of the\\Optic Nerve Head\\Using Phase Portraits / Concluding Remarks

Biomedical Signals and Systems

Biomedical Signals and Systems PDF Author: Joseph Tranquillo
Publisher: Springer Nature
ISBN: 3031016599
Category : Technology & Engineering
Languages : en
Pages : 211

Get Book Here

Book Description
Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time and frequency analysis and filters. Embedded within each chapter are examples from the biological world, ranging from medical devices to cell and molecular biology. While the focus of the book is on the theory of analog signals and systems, many chapters also introduce the corresponding topics in the digital realm. Although some derivations appear, the focus is on the concepts and how to apply them. Throughout the text, systems vocabulary is introduced which will allow the reader to read more advanced literature and communicate with scientist and engineers. Homework and Matlab simulation exercises are presented at the end of each chapter and challenge readers to not only perform calculations and simulations but also to recognize the real-world signals and systems around them. Table of Contents: Preface / Acknowledgments / Introduction / System Types / System Models / Laplace Transform / Block Diagrams / Stability / Feedback / System Response / Control / Time Domain Analysis / Frequency Domain Analysis / Filters / Author's Biography