Modelling of Phase Inversion and Associated Phenomena in Liquid-liquid Systems

Modelling of Phase Inversion and Associated Phenomena in Liquid-liquid Systems PDF Author: Leslie Yu-Ming Yeo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Modelling of Phase Inversion and Associated Phenomena in Liquid-liquid Systems

Modelling of Phase Inversion and Associated Phenomena in Liquid-liquid Systems PDF Author: Leslie Yu-Ming Yeo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Modelling of Phase Inversion and Assciated Phenomena in Liquid-liquid Systems

Modelling of Phase Inversion and Assciated Phenomena in Liquid-liquid Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


International Symposium on Liquid-liquid Two Phase Flow and Transport Phenomena

International Symposium on Liquid-liquid Two Phase Flow and Transport Phenomena PDF Author: D. M. Maron
Publisher: Begell House Publishers
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 628

Get Book Here

Book Description
The proceedings of this symposium, held in Antalya, Turkey, November 3-7, 1997, cover topics such as flow patterns in oil-water systems; flow characteristics; flow phenomena in two fluid systems; modeling of transport phenomena in liquid-liquid systems; mass transfer in liquid-liquid systems; transport phenomena in two-fluid systems; two fluid systems and applications; separation of liquid liquid emulsions; liquid-liquid separation, phenomena, and equipment; interfacial phenomena; stability and transitions; measurement and instrumentation; and liquid-liquid mixing phenomena and equipment.

Phase Inversion in Dispersed Liquid-liquid Pipe Flow

Phase Inversion in Dispersed Liquid-liquid Pipe Flow PDF Author: K. H. Ngan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis presents the experimental and theoretical investigations on the development of phase inversion in horizontal pipeline flow of two immiscible liquids. It aims to provide an understanding on the flow development across the phase inversion transition as well as the effect on pressure drop. Experimental investigation on phase inversion and associated phenomena were conducted in a 38mm I.D. liquid pipeline flow facility available in the Department of Chemical Engineering at University College London (UCL). Two sets of test pipelines are constructed using stainless steel and acrylic. The inlet section of the pipeline has also been designed in two different configurations - (1) Y-junction inlet to allow dispersed flow to be developed along the pipeline (2) Dispersed inlet to allow formation of dispersion immediately after the two phases are joined. Pressure drop along the pipeline is measured using a differential pressure transducer and is studied for changes due to redistribution of the phases during inversion. Various conductivity probes (ring probes, wire probes, electrical resistance tomography and dual impedance probe) are installed along the pipeline to detect the change in phase continuity and distribution as well as drop size distribution based on the difference in conductivity of the oil and water phases. During the investigation, the occurrence of phase inversion is firstly investigated and the gradual transition during the process is identified. The range of phase fraction at which the transition occurs is determined. The range of phase fraction becomes significantly narrower when the dispersed inlet is used. The outcome of the investigation also becomes the basis for subsequent investigation with the addition of glycerol to the water phase to reduce the interfacial tension. Based on the experimental outcome, the addition of glycerol does not affect the inversion of the oil phase while enhancing the continuity of the water phase. As observed experimentally, significant changes in pressure gradient can be observed particularly during phase inversion. Previous literatures have also reviewed that phase inversion occurs at the maximum pressure gradient. In a horizontal pipeline, pressure gradient is primarily caused by the frictional shear on the fluid flow in the pipe and, in turn, is significantly affected by the fluid viscosities. A study is conducted to investigate on the phase inversion point by identifying the maximum mixture viscosity (i.e. maximum pressure gradient) that an oil-in-water (O/W) and water-in-oil (W/O) dispersion can sustain. It is proposed that the mixture viscosity will not increase further with an increase in the initial dispersed phase if the inverted dispersion has a lower mixture viscosity. This hypothesis has been applied across a wide range of liquid-liquid dispersion with good results. This study however cannot determine the hysteresis effect which is possibly caused by inhomogeneous inversion in the fluid system. A mechanistic model is developed to predict the flow characteristics as well as the pressure gradient during a phase inversion transition. It aims to predict the observed change in flow pattern from a fully dispersed flow to a dual continuous flow during phase inversion transition. The existence of the interfacial height provides a selection criterion to determine whether a momentum balance model for homogeneous flow or a two-fluid layered flow should be applied to calculate the pressure gradient. A friction factor is also applied to account for the drag reduction in a dispersed flow. This developed model shows reasonable results in predicting the switch between flow patterns (i.e. the boundaries for the phase inversion transition) and the corresponding pressure gradient. Lastly, computational fluid dynamic (CFD) simulation is applied to identify the key interphase forces in a dispersed flow. The study has also attempted to test the limitation of existing interphase force models to densely dispersed flow. From the study, it is found that the lift force and the turbulent dispersion forces are significant to the phase distribution in a dispersed flow. It also provides a possible explanation to the observed flow distribution in the experiments conducted. However, the models available in CFX are still unable to predict well in a dense dispersion (60% dispersed). This study is also suggested to form the basis for more detailed work in future to optimize the simulation models to improve the prediction of phase inversion in a CFD simulation.

Modelling and Experimentation in Two-Phase Flow

Modelling and Experimentation in Two-Phase Flow PDF Author: Volfango Bertola
Publisher: Springer
ISBN: 3709125383
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.

Phase Inversion in Stirred Liquid Liquid Systems

Phase Inversion in Stirred Liquid Liquid Systems PDF Author: Richard Walter Luhning
Publisher:
ISBN:
Category :
Languages : en
Pages : 612

Get Book Here

Book Description


Observation, Prediction and Simulation of Phase Transitions in Complex Fluids

Observation, Prediction and Simulation of Phase Transitions in Complex Fluids PDF Author: Marc Baus
Publisher: Springer Science & Business Media
ISBN: 9401100659
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.

Studies of Phase Inversion and Ambivalence in Liquid-liquid Systems

Studies of Phase Inversion and Ambivalence in Liquid-liquid Systems PDF Author: M. Arashmid
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


The Canadian Journal of Chemical Engineering

The Canadian Journal of Chemical Engineering PDF Author:
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 412

Get Book Here

Book Description


Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 540

Get Book Here

Book Description