Modelling and Control of Dynamic Systems Using Gaussian Process Models

Modelling and Control of Dynamic Systems Using Gaussian Process Models PDF Author: Juš Kocijan
Publisher: Springer
ISBN: 3319210211
Category : Technology & Engineering
Languages : en
Pages : 281

Get Book Here

Book Description
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Efficient Reinforcement Learning Using Gaussian Processes

Efficient Reinforcement Learning Using Gaussian Processes PDF Author: Marc Peter Deisenroth
Publisher: KIT Scientific Publishing
ISBN: 3866445695
Category : Electronic computers. Computer science
Languages : en
Pages : 226

Get Book Here

Book Description
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Simulation for a Sustainable Future

Simulation for a Sustainable Future PDF Author: Miguel Mujica Mota
Publisher: Springer Nature
ISBN: 3031684389
Category :
Languages : en
Pages : 374

Get Book Here

Book Description


Innovations in Intelligent Machines-5

Innovations in Intelligent Machines-5 PDF Author: Valentina Emilia Balas
Publisher: Springer
ISBN: 3662433702
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
This research monograph presents selected areas of applications in the field of control systems engineering using computational intelligence methodologies. A number of applications and case studies are introduced. These methodologies are increasing used in many applications of our daily lives. Approaches include, fuzzy-neural multi model for decentralized identification, model predictive control based on time dependent recurrent neural network development of cognitive systems, developments in the field of Intelligent Multiple Models based Adaptive Switching Control, designing military training simulators using modelling, simulation, and analysis for operational analyses and training, methods for modelling of systems based on the application of Gaussian processes, computational intelligence techniques for process control and image segmentation technique based on modified particle swarm optimized-fuzzy entropy.

Modelling and Parameter Estimation of Dynamic Systems

Modelling and Parameter Estimation of Dynamic Systems PDF Author: J.R. Raol
Publisher: IET
ISBN: 0863413633
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.

Identification of Dynamic Systems

Identification of Dynamic Systems PDF Author: Rolf Isermann
Publisher: Springer
ISBN: 9783642422676
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Artificial Intelligence for the Internet of Everything

Artificial Intelligence for the Internet of Everything PDF Author: William Lawless
Publisher: Academic Press
ISBN: 0128176377
Category : Computers
Languages : en
Pages : 306

Get Book Here

Book Description
Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior. Each chapter addresses practical, measurement, theoretical and research questions about how these "things may affect individuals, teams, society or each other. Of particular focus is what may happen when these "things begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other "things. - Considers the foundations, metrics and applications of IoE systems - Debates whether IoE systems should speak to humans and each other - Explores how IoE systems affect targeted audiences and society - Discusses theoretical IoT ecosystem models

Recent Advances in Model Predictive Control

Recent Advances in Model Predictive Control PDF Author: Timm Faulwasser
Publisher: Springer Nature
ISBN: 3030632814
Category : Science
Languages : en
Pages : 250

Get Book Here

Book Description
This book focuses on distributed and economic Model Predictive Control (MPC) with applications in different fields. MPC is one of the most successful advanced control methodologies due to the simplicity of the basic idea (measure the current state, predict and optimize the future behavior of the plant to determine an input signal, and repeat this procedure ad infinitum) and its capability to deal with constrained nonlinear multi-input multi-output systems. While the basic idea is simple, the rigorous analysis of the MPC closed loop can be quite involved. Here, distributed means that either the computation is distributed to meet real-time requirements for (very) large-scale systems or that distributed agents act autonomously while being coupled via the constraints and/or the control objective. In the latter case, communication is necessary to maintain feasibility or to recover system-wide optimal performance. The term economic refers to general control tasks and, thus, goes beyond the typically predominant control objective of set-point stabilization. Here, recently developed concepts like (strict) dissipativity of optimal control problems or turnpike properties play a crucial role. The book collects research and survey articles on recent ideas and it provides perspectives on current trends in nonlinear model predictive control. Indeed, the book is the outcome of a series of six workshops funded by the German Research Foundation (DFG) involving early-stage career scientists from different countries and from leading European industry stakeholders.

Intelligent Control Systems Using Computational Intelligence Techniques

Intelligent Control Systems Using Computational Intelligence Techniques PDF Author: A.E. Ruano
Publisher: IET
ISBN: 0863414893
Category : Computers
Languages : en
Pages : 478

Get Book Here

Book Description
Intelligent Control techniques are becoming important tools in both academia and industry. Methodologies developed in the field of soft-computing, such as neural networks, fuzzy systems and evolutionary computation, can lead to accommodation of more complex processes, improved performance and considerable time savings and cost reductions. Intelligent Control Systems using Computational Intellingence Techniques details the application of these tools to the field of control systems. Each chapter gives and overview of current approaches in the topic covered, with a set of the most important references in the field, and then details the author's approach, examining both the theory and practical applications.

Advances in Neural Information Processing Systems 15

Advances in Neural Information Processing Systems 15 PDF Author: Suzanna Becker
Publisher: MIT Press
ISBN: 9780262025508
Category : Computers
Languages : en
Pages : 1738

Get Book Here

Book Description
Proceedings of the 2002 Neural Information Processing Systems Conference.