Author: Frederick F. Simon
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 20
Book Description
Modeling of the Heat Transfer in Bypass Transitional Boundary-layer Flows
Author: Frederick F. Simon
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 20
Book Description
Modeling of the Heat Transfer in Bypass Transitional Boundary-layer Flows
Author: Frederick F. Simon
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Boundary Layer Flows
Author: Vallampati Ramachandra Prasad
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Turbulence and Transition Modelling
Author: M. Hallbäck
Publisher: Springer Science & Business Media
ISBN: 9401586667
Category : Science
Languages : en
Pages : 379
Book Description
The aim of this book is to give, within a single volume, an introduction to the fields of turbulence modelling and transition-to-turbulence prediction, and to provide the physical background for today's modelling approaches in these problem areas as well as giving a flavour of advanced use of prediction methods. Turbulence modelling approaches, ranging from single-point models based on the eddy-viscosity concept and the Reynolds stress transport equations (Chapters 3,4,5), to large-eddy simulation (LES) techniques (Ch. 7), are covered. The foundations of hydrodynamical stability and transition are presented (Ch. 2) along with transition prediction methods based on single-point closures (Ch. 6), LES techniques (Ch. 7) and the parabolized stability equations (Ch. 8). The book addresses engineers and researchers, in industry or academia, who are entering into the fields of turbulence or transition modelling research or need to apply turbulence or transition prediction methods in their work.
Publisher: Springer Science & Business Media
ISBN: 9401586667
Category : Science
Languages : en
Pages : 379
Book Description
The aim of this book is to give, within a single volume, an introduction to the fields of turbulence modelling and transition-to-turbulence prediction, and to provide the physical background for today's modelling approaches in these problem areas as well as giving a flavour of advanced use of prediction methods. Turbulence modelling approaches, ranging from single-point models based on the eddy-viscosity concept and the Reynolds stress transport equations (Chapters 3,4,5), to large-eddy simulation (LES) techniques (Ch. 7), are covered. The foundations of hydrodynamical stability and transition are presented (Ch. 2) along with transition prediction methods based on single-point closures (Ch. 6), LES techniques (Ch. 7) and the parabolized stability equations (Ch. 8). The book addresses engineers and researchers, in industry or academia, who are entering into the fields of turbulence or transition modelling research or need to apply turbulence or transition prediction methods in their work.
NASA Technical Paper
Author:
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 212
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 212
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 692
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 692
Book Description
Analytical Heat Transfer
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1000597296
Category : Science
Languages : en
Pages : 595
Book Description
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
Publisher: CRC Press
ISBN: 1000597296
Category : Science
Languages : en
Pages : 595
Book Description
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
Advances in Transitional Flow Modeling
Author: Chunhua Sheng
Publisher: Springer
ISBN: 3319325760
Category : Technology & Engineering
Languages : en
Pages : 140
Book Description
This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.
Publisher: Springer
ISBN: 3319325760
Category : Technology & Engineering
Languages : en
Pages : 140
Book Description
This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.