Modeling of Human Head Impact Response

Modeling of Human Head Impact Response PDF Author: Hao Hu
Publisher:
ISBN:
Category :
Languages : en
Pages : 258

Get Book Here

Book Description

Modeling of Human Head Impact Response

Modeling of Human Head Impact Response PDF Author: Hao Hu
Publisher:
ISBN:
Category :
Languages : en
Pages : 258

Get Book Here

Book Description


Multiscale Biomechanical Modeling of the Brain

Multiscale Biomechanical Modeling of the Brain PDF Author: Mark F. Horstemeyer
Publisher: Elsevier
ISBN: 0128181443
Category : Technology & Engineering
Languages : en
Pages : 276

Get Book Here

Book Description
Multiscale Biomechanical Modeling of the Brain discusses the constitutive modeling of the brain at various length scales (nanoscale, microscale, mesoscale, macroscale and structural scale). In each scale, the book describes the state-of-the- experimental and computational tools used to quantify critical deformational information at each length scale. Then, at the structural scale, several user-based constitutive material models are presented, along with real-world boundary value problems. Lastly, design and optimization concepts are presented for use in occupant-centric design frameworks. This book is useful for both academia and industry applications that cover basic science aspects or applied research in head and brain protection. The multiscale approach to this topic is unique, and not found in other books. It includes meticulously selected materials that aim to connect the mechanistic analysis of the brain tissue at size scales ranging from subcellular to organ levels. Presents concepts in a theoretical and thermodynamic framework for each length scale Teaches readers not only how to use an existing multiscale model for each brain but also how to develop a new multiscale model Takes an integrated experimental-computational approach and gives structured multiscale coverage of the problems

Human Impact Response

Human Impact Response PDF Author: W. King
Publisher: Springer Science & Business Media
ISBN: 1475715021
Category : Technology & Engineering
Languages : en
Pages : 401

Get Book Here

Book Description


Modeling the Biodynamical Response of the Human Head for Injury Analysis

Modeling the Biodynamical Response of the Human Head for Injury Analysis PDF Author: Danielle N. George
Publisher:
ISBN: 9781423525363
Category :
Languages : en
Pages : 106

Get Book Here

Book Description
The objective of this study is to develop a finite element model of the human head and neck to investigate the biomechanics of head injury. The finite element model is a two-dimensional, plane strain representation of the cervical spine, skull, and major components of the brain including the cerebrum, cerebellum, brain stem, tentorium and the surrounding cerebral spinal fluid. The dynamic response of the model is validated by comparison with the results of human volunteer sled acceleration experiments conducted by Ewing et al. 10 . To validate the head model, one of the head impact experiments performed on cadavers by Nahum et al. 24, is simulated. The model responses are compared with the measured cadaveric test data in terms of head acceleration, and intracranial pressures measured at four locations including the coup and contrecoup sites. The validated model is used to demonstrate that the Head Injury Criterion (HIC), which is based on resultant translational acceleration of the center of gravity of the head, does not relate to the various mechanisms of brain injury and is therefore insufficient in predicting brain injury.

Finite Element Modeling of Human Brain Response to Football Helmet Impacts

Finite Element Modeling of Human Brain Response to Football Helmet Impacts PDF Author: Timothy Darling
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 63

Get Book Here

Book Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury. To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.

A 3D FEM COMPARATIVE STUDY ON THE IMPACT RESPONSE BETWEEN HUMAN HEAD AND NOCSAE HEAD DUE TO FREE FALL

A 3D FEM COMPARATIVE STUDY ON THE IMPACT RESPONSE BETWEEN HUMAN HEAD AND NOCSAE HEAD DUE TO FREE FALL PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : We all enjoy sports be it watching or playing. Concussion is well known topic when it comes sports related injuries. However, concussion and brain injury is not exclusive to sports and outdoor activities. Sometimes, even the impact due to slip and fall at small heights can cause serious damage to the head and brain. This report studies the response generated in the human head model and the commercially use dummy NOCSAE headform due to drop from height of 2, 3, 4 and 5 feet. Earlier studies have related brain kinetics and head kinematics to concussion and traumatic brain injury (TBI). There are also studies that relate the linear and angular accelerations between different commercial dummy head models and the human head model, which were done experimentally. The main purpose of his study is to compare these parameters for the both models analytically using simulations. The linear velocity corresponding to each drop height were calculated and used as input data for the simulations. The impacts were simulated using RADIOSS solver in Hypermesh. Various parameters like contact force, linear acceleration and its components along each of the co-ordinate axes were extracted from the FE analysis. These values were utilized to calculate linear and angular acceleration for the entire models. These values were plotted against tolerance limits for various levels of brain injury. v It was observed that linear acceleration values for both the Human Head model and the dummy NOCSAE Headform confirm each other. Superior impact of the head was found most susceptible to traumatic brain injury followed by lateral impact when linear acceleration was considered as the criteria. The values of angular acceleration though did not represent glaring similarities between the two models, but there was a general trend of increase in angular acceleration with increase in drop height.

Impact Biomechanics

Impact Biomechanics PDF Author: Society of Automotive Engineers
Publisher: SAE International
ISBN:
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
Thirteen papers from the biomechanics technical sessions of the 2002 SAE congress use laboratory experiments, computer models, and field data to evaluate the human body's kinematics, kinetics, and injury potential in response to impact loads caused by automobile accidents. Topics include finite elem

Sports-Related Concussions in Youth

Sports-Related Concussions in Youth PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309288037
Category : Medical
Languages : en
Pages : 215

Get Book Here

Book Description
In the past decade, few subjects at the intersection of medicine and sports have generated as much public interest as sports-related concussions - especially among youth. Despite growing awareness of sports-related concussions and campaigns to educate athletes, coaches, physicians, and parents of young athletes about concussion recognition and management, confusion and controversy persist in many areas. Currently, diagnosis is based primarily on the symptoms reported by the individual rather than on objective diagnostic markers, and there is little empirical evidence for the optimal degree and duration of physical rest needed to promote recovery or the best timing and approach for returning to full physical activity. Sports-Related Concussions in Youth: Improving the Science, Changing the Culture reviews the science of sports-related concussions in youth from elementary school through young adulthood, as well as in military personnel and their dependents. This report recommends actions that can be taken by a range of audiences - including research funding agencies, legislatures, state and school superintendents and athletic directors, military organizations, and equipment manufacturers, as well as youth who participate in sports and their parents - to improve what is known about concussions and to reduce their occurrence. Sports-Related Concussions in Youth finds that while some studies provide useful information, much remains unknown about the extent of concussions in youth; how to diagnose, manage, and prevent concussions; and the short- and long-term consequences of concussions as well as repetitive head impacts that do not result in concussion symptoms. The culture of sports negatively influences athletes' self-reporting of concussion symptoms and their adherence to return-to-play guidance. Athletes, their teammates, and, in some cases, coaches and parents may not fully appreciate the health threats posed by concussions. Similarly, military recruits are immersed in a culture that includes devotion to duty and service before self, and the critical nature of concussions may often go unheeded. According to Sports-Related Concussions in Youth, if the youth sports community can adopt the belief that concussions are serious injuries and emphasize care for players with concussions until they are fully recovered, then the culture in which these athletes perform and compete will become much safer. Improving understanding of the extent, causes, effects, and prevention of sports-related concussions is vitally important for the health and well-being of youth athletes. The findings and recommendations in this report set a direction for research to reach this goal.

Modeling and Control of the Human Head-neck Response Under Impact Acceleration

Modeling and Control of the Human Head-neck Response Under Impact Acceleration PDF Author: Maher L. Rouziek
Publisher:
ISBN:
Category : Head
Languages : en
Pages : 222

Get Book Here

Book Description


Using Finite Element Modeling to Analyze Injury Thresholds of Traumatic Brain Injury from

Using Finite Element Modeling to Analyze Injury Thresholds of Traumatic Brain Injury from PDF Author: Anna Marie Dulaney
Publisher:
ISBN:
Category :
Languages : en
Pages : 89

Get Book Here

Book Description
A finite element model was developed for a range of human head-sUAS impacts to provide multiple case scenarios of impact severity at two response regions of interest: global and local. The hypothesis was that for certain impact scenarios, local response injuries of the brain (frontal, parietal, occipital, temporal lobes, and cerebellum) have a higher severity level compared to global response injury, the response at the Center of Gravity (CG) of the head. This study is the first one to predict and quantify the influence of impact parameters such as impact velocity, location, offset, and angle of impact to severity of injury. The findings show that an sUAS has the potential of causing minimal harm under certain impact scenarios, while other scenarios cause fatal injuries. Additionally, results indicate that the human head’s global response as a less viable response region of interest when measuring injury severity for clinical diagnosis. It is hoped that the results from this research can be useful to assist decision making for treatments and may offer different perspectives in sUAS designs or operation environments.