Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks

Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks PDF Author: Nima Mohajerin
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 145

Get Book Here

Book Description
This thesis investigates the applicability of Recurrent Neural Networks (RNNs) and Deep Learning methods for multi-step prediction of robotic systems. The unmodeled dynamics and simplifying assumptions in classic modeling methods result in models that yield rapidly diverging predictions when the model is used in an iterative fashion, i.e., for multi-step prediction. However, the effect of the unmodeled dynamics can be captured by collecting datasets of the system. Deep Learning provides a strong set of tools to extract patterns from data, however, large datasets are commonly required for the methods to work well. Collecting a large amount of data from a robotic system can be a cumbersome and expensive approach. In this work, Deep Learning methods, particularly RNNs, are studied and employed for the purpose of learning models of two aerial vehicles from experimental data. The feasibility of employing RNNs is first studied to learn a model of a quadrotor based on a simulated dataset, which yields a Multi Layer Fully Connected (MLFC) architecture. Models can be learned for multi-step prediction, recovering excellent predictions over 500 timesteps in the presence of simulated disturbances to the robot and noise on the measurements. To learn models from experimental data, the RNN state initialization problem is defined and formulated. It is shown that the RNN state initialization problem can be addressed by creating and training an initialization network jointly with the multi-step prediction network, and the combination can be used in a black-box modeling approach such that the model produces predictions which are immediately accurate. The RNN based black-box methods are trained on an experimental dataset gathered from a quadrotor and a publicly available helicopter dataset. The quadrotor dataset, which encompasses approximately 4 hours of flight data in various regimes, has been released and is now available publicly online. Finally, a hybrid network, which combines the proposed RNN based black-box models with a physics based quadrotor model into a single RNN-based modeling system is introduced. The proposed hybrid network solves many of the limitations of the existing state of the art in long-term prediction for robotics systems. Trained on the quadrotor dataset, the hybrid model provides accurate body angular rate and velocity predictions of the vehicle over almost 2 seconds which is suitable to be used in a variety of model-based controller applications.

Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks

Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks PDF Author: Nima Mohajerin
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 145

Get Book Here

Book Description
This thesis investigates the applicability of Recurrent Neural Networks (RNNs) and Deep Learning methods for multi-step prediction of robotic systems. The unmodeled dynamics and simplifying assumptions in classic modeling methods result in models that yield rapidly diverging predictions when the model is used in an iterative fashion, i.e., for multi-step prediction. However, the effect of the unmodeled dynamics can be captured by collecting datasets of the system. Deep Learning provides a strong set of tools to extract patterns from data, however, large datasets are commonly required for the methods to work well. Collecting a large amount of data from a robotic system can be a cumbersome and expensive approach. In this work, Deep Learning methods, particularly RNNs, are studied and employed for the purpose of learning models of two aerial vehicles from experimental data. The feasibility of employing RNNs is first studied to learn a model of a quadrotor based on a simulated dataset, which yields a Multi Layer Fully Connected (MLFC) architecture. Models can be learned for multi-step prediction, recovering excellent predictions over 500 timesteps in the presence of simulated disturbances to the robot and noise on the measurements. To learn models from experimental data, the RNN state initialization problem is defined and formulated. It is shown that the RNN state initialization problem can be addressed by creating and training an initialization network jointly with the multi-step prediction network, and the combination can be used in a black-box modeling approach such that the model produces predictions which are immediately accurate. The RNN based black-box methods are trained on an experimental dataset gathered from a quadrotor and a publicly available helicopter dataset. The quadrotor dataset, which encompasses approximately 4 hours of flight data in various regimes, has been released and is now available publicly online. Finally, a hybrid network, which combines the proposed RNN based black-box models with a physics based quadrotor model into a single RNN-based modeling system is introduced. The proposed hybrid network solves many of the limitations of the existing state of the art in long-term prediction for robotics systems. Trained on the quadrotor dataset, the hybrid model provides accurate body angular rate and velocity predictions of the vehicle over almost 2 seconds which is suitable to be used in a variety of model-based controller applications.

Modeling Dynamical Systems with Recurrent Neural Networks

Modeling Dynamical Systems with Recurrent Neural Networks PDF Author: Fu-Sheng Tsung
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 264

Get Book Here

Book Description


Deep Learning in Multi-step Prediction of Chaotic Dynamics

Deep Learning in Multi-step Prediction of Chaotic Dynamics PDF Author: Matteo Sangiorgio
Publisher: Springer Nature
ISBN: 3030944824
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.

Neural Networks for Identification, Prediction and Control

Neural Networks for Identification, Prediction and Control PDF Author: Duc T. Pham
Publisher: Springer Science & Business Media
ISBN: 1447132440
Category : Technology & Engineering
Languages : en
Pages : 243

Get Book Here

Book Description
In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems' structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are also presented. The main learning algorithm adopted in the applications is the standard backpropagation (BP) algorithm. Widrow-Hoff learning, dynamic BP and evolutionary learning are also described.

Modeling of Dynamic Systems Using Recurrent Neural Networks

Modeling of Dynamic Systems Using Recurrent Neural Networks PDF Author: Venugopal Siddhanti
Publisher:
ISBN:
Category : Neural networks (Computer science)
Languages : en
Pages : 114

Get Book Here

Book Description


TIME SERIES FORECASTING USING NEURAL NETWORKS. EXAMPLES WITH MATLAB

TIME SERIES FORECASTING USING NEURAL NETWORKS. EXAMPLES WITH MATLAB PDF Author: Cesar Perez Lopez
Publisher: CESAR PEREZ
ISBN:
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
MATLAB has the tool Deep Leraning Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, timeseries forecasting, and dynamic system modeling and control. Dynamic neural networks are good at timeseries prediction. You can use the Neural Net Time Series app to solve different kinds of time series problems It is generally best to start with the GUI, and then to use the GUI to automatically generate command line scripts. Before using either method, the first step is to define the problem by selecting a data set. Each GUI has access to many sample data sets that you can use to experiment with the toolbox. If you have a specific problem that you want to solve, you can load your own data into the workspace. With MATLAB is possibe to solve three different kinds of time series problems. In the first type of time series problem, you would like to predict future values of a time series y(t) from past values of that time series and past values of a second time series x(t). This form of prediction is called nonlinear autoregressive network with exogenous (external) input, or NARX. In the second type of time series problem, there is only one series involved. The future values of a time series y(t) are predicted only from past values of that series. This form of prediction is called nonlinear autoregressive, or NAR. The third time series problem is similar to the first type, in that two series are involved, an input series (predictors) x(t) and an output series (responses) y(t). Here you want to predict values of y(t) from previous values of x(t), but without knowledge of previous values of y(t). This book develops methods for time series forecasting using neural networks across MATLAB

Neural Network Modeling and Identification of Dynamical Systems

Neural Network Modeling and Identification of Dynamical Systems PDF Author: Yuri Tiumentsev
Publisher: Academic Press
ISBN: 0128154306
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training Offers application examples of dynamic neural network technologies, primarily related to aircraft Provides an overview of recent achievements and future needs in this area

Advances in Neural Networks - ISNN 2004

Advances in Neural Networks - ISNN 2004 PDF Author: Fuliang Yin
Publisher: Springer
ISBN: 3540286489
Category : Computers
Languages : en
Pages : 1054

Get Book Here

Book Description
This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.

Modeling of Dynamical Systems with Complex-valued Recurrent Neural Networks

Modeling of Dynamical Systems with Complex-valued Recurrent Neural Networks PDF Author: Alexey S. Minin
Publisher:
ISBN:
Category :
Languages : en
Pages : 159

Get Book Here

Book Description


On Neural Networks in Identification and Control of Dynamic Systems

On Neural Networks in Identification and Control of Dynamic Systems PDF Author: Minh Phan
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Get Book Here

Book Description