Modeling Colloid Facilitated Groundwater Contaminant Transport

Modeling Colloid Facilitated Groundwater Contaminant Transport PDF Author: Shiyan Jiang
Publisher:
ISBN:
Category : Groundwater flow
Languages : en
Pages : 232

Get Book Here

Book Description

Modeling Colloid Facilitated Groundwater Contaminant Transport

Modeling Colloid Facilitated Groundwater Contaminant Transport PDF Author: Shiyan Jiang
Publisher:
ISBN:
Category : Groundwater flow
Languages : en
Pages : 232

Get Book Here

Book Description


Modeling of Colloid Facilitated Contaminant Transport in Unsaturated Porous Media

Modeling of Colloid Facilitated Contaminant Transport in Unsaturated Porous Media PDF Author: Heecheul Choi
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Get Book Here

Book Description


Colloid and Colloid-Facilitated Contaminant Transport Experiments and Models to Support Assessments of Radionuclide Migration at Yucca Mountain and the Nevada Test Site

Colloid and Colloid-Facilitated Contaminant Transport Experiments and Models to Support Assessments of Radionuclide Migration at Yucca Mountain and the Nevada Test Site PDF Author: P. Reimus
Publisher:
ISBN:
Category :
Languages : en
Pages : 1

Get Book Here

Book Description
In recent years, numerous laboratory and field experiments have been conducted to assess and parameterize colloid and colloid-facilitated radionuclide transport for the Yucca Mountain Project and the Nevada Test Site (NTS) Environmental Restoration Project. Radionuclide contamination of ground water currently exists within or near underground nuclear test cavities at the NTS, and the proposed Yucca Mountain high-level nuclear waste repository represents a potential future source of radionuclide contamination of ground water at the NTS. Furthermore, recent field observations have indicated that small amounts of Plutonium, which normally adsorbs very strongly to mineral surfaces in aquifers, can transport quite rapidly and over significant distances in ground water when associated with inorganic colloids (Kersting et al., 1999). Groundwater samples from all over the Nevada Test Site have been analyzed for colloid concentrations and size distributions, and it is clear that there are significant mass loadings of colloids in the ground water at some locations. These colloids represent mobile surface area for potentially transporting strongly-adsorbed radionuclides. Field transport experiments have involved the use of fluorescent-dyed carboxylate-modified latex (CML) microspheres in the 250- to 650-nm diameter size range as surrogates for natural colloids in forced-gradient tracer tests. These experiments have indicated that effective colloid filtration coefficients appear to decrease as time and length scales increase. They suggest that a small fraction of colloids may be able to transport significant distances in groundwater systems. Laboratory experiments have been conducted to determine radionuclide sorption and desorption parameters onto inorganic colloids present in the groundwater systems and also to determine transport parameters for inorganic colloids in both fractured and porous media present at the Nevada Test Site. More recent laboratory experiments have involved injecting inorganic colloids with radionuclides adsorbed onto them into fractured or porous media to determine the ability of the colloids to facilitate the transport of the radionuclides through the media. Recent experiments have also involved comparing the transport behavior of CML microspheres and inorganic colloids so that more defensible inferences about inorganic colloid transport can be made from CML microsphere transport observations in field tracer tests. All of this experimental information has been collectively used to develop a modeling framework for evaluating sensitivities of predicted colloid-facilitated radionuclide transport to various colloid-transport and radionuclide-colloid-interaction parameters. This modeling framework is helping to focus future experimental efforts on processes and parameters that have the greatest potential impact on colloid-facilitated radionuclide transport at the Nevada Test Site.

Analytical Modeling of Solute Transport in Groundwater

Analytical Modeling of Solute Transport in Groundwater PDF Author: Mark Goltz
Publisher: John Wiley & Sons
ISBN: 1119300231
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
Teaches, using simple analytical models how physical, chemical, and biological processes in the subsurface affect contaminant transport Uses simple analytical models to demonstrate the impact of subsurface processes on the fate and transport of groundwater contaminants Includes downloadable modeling tool that provides easily understood graphical output for over thirty models Modeling tool and book are integrated to facilitate reader understanding Collects analytical solutions from many sources into a single volume and, for the interested reader, shows how these solutions are derived from the governing model equations

Colloid Mobilization and Transport in Contaminant Plumes

Colloid Mobilization and Transport in Contaminant Plumes PDF Author:
Publisher:
ISBN:
Category : Colloids
Languages : en
Pages : 40

Get Book Here

Book Description


Colloid and Surfactant Transport Modeling Through Agricultural Soil

Colloid and Surfactant Transport Modeling Through Agricultural Soil PDF Author: Sandip Raman Patil
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: National Water-Quality Assessment Program (NAWQA) was designed just after the U.S. Geological was established. The primary objective of the NAWQA was to understand the key processes controlling contaminant fate and transport into the Nation's water resources. In particular, wide use of pesticides and fertilizers in agricultural field can impact on the quality of surface and ground waters. Contaminants can be carried to the water bodies by several ways. In colloid-facilitated transport process colloidal particles serves as a transport media for the contaminants. Colloid release from the agricultural soil under unsaturated conditions is controlled by the hydrodynamic force, capillary force and electrostatic force that is determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, more colloids were released. In situ colloid mobilization and transport has been studied under both saturated and unsaturated conditions. In saturated conditions, the controlling parameters are solution ionic strength and pH. Colloid mobilization and transport have been modeled by the advection-dispersion equation with a first-order colloid release. The inverse version of these models can provide a platform to estimate transport parameters based on transport observations. In this research, we taken the advantages of existing contaminants transport models by fully utilizing them to investigate colloid interactions with the surrounding environment and provide parameter constraints for colloid transport modeling applications under saturated conditions. In natural systems, colloids present a potential health risk due to their propensity to associate with contaminants or in the case of certain biological colloids, inherent pathogenic nature. Although colloidal interactions have been studied for many years and much has been learned about the physical and chemical processes that control colloid retention, there still remains significant uncertainty about the processes that govern colloid release. The aim of this study was to investigate the release of in situ colloids as a function of soil depth. Colloid release from intact agricultural soil columns with variable length was investigated. Colloid release curves were simulated using an implicit, finite-difference scheme and colloid release rate coefficient was found to be an exponential function of the soil depth. The simulated results demonstrated that transport parameters were not consistent along the depth of the soil profile. Wetting agents wet hydrophobic soil by lowering the cohesive and/or adhesive surface tension, which allows the water to spread out more evenly and allows for better penetration into the hydrophobic soils. While enhancing water penetration, wetting agent applications may bring adverse impact on the soil and groundwater at the same time. The residual organic phase in the soil pores poses a long-term source of groundwater contamination. After use, residual wetting agents and their degradation products are discharged to groundwater or directly to surface waters, then dispersed into different environmental compartments. In order to assess their environmental risks, we need to understand the distribution, behavior, fate and biological effects of these surfactants in the environment. This research was designed to investigate the application of nonionic wetting agents in agricultural soils. Performance of nonionic surfactants in intact soil columns collected from agricultural soils was explored and related to the soil and wetting agent properties. In addition, the impact of the organic concentration of wetting agent fate and transport was investigated. The transport of wetting agents in the agricultural soil columns was simulated using the proposed transport models and subsequently, the effect of organic compounds on wetting agent transport was quantified.

Facilitated Transport of Inorganic Contaminants in Ground Water

Facilitated Transport of Inorganic Contaminants in Ground Water PDF Author:
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 20

Get Book Here

Book Description


Qualitative Properties of a Model for Carrier Facilitated Groundwater Contaminant Transport

Qualitative Properties of a Model for Carrier Facilitated Groundwater Contaminant Transport PDF Author: Peter Knabner
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description


Facilitated Transport of Groundwater Contaminants in the Vadose Zone

Facilitated Transport of Groundwater Contaminants in the Vadose Zone PDF Author: Veronica L. Morales
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Get Book Here

Book Description
Although a wide variety of studies have been conducted to understand the numerous processes responsible for the transport of solutes and particulates through soils in order to prevent groundwater contamination, many gaps remain. This thesis presents the findings of two mechanisms (colloid facilitated transport and development of preferential flow infiltration) by which contaminants are able to expedite their transport through unsaturated soils (i.e., the vadose zone), easily reach deeper groundwater, and lower the filtering capacity of soils. The first study of this thesis bridges the gap between changes in polymeric characteristics of dissolved organic matter-colloid complexes induced by solution composition, and the effect these have on colloid transport through unsaturated soils. The second study presents a semi-empirical approach to improve existing models that predict attachment efficiency ([alpha]) of electrosterically stabilized suspensions moving through a porous medium using direct measurements of polymeric characteristics. The fourth study elucidates the capillary forces responsible for the transition between pinning or allowing particles to slip when they approach an air-water-solid interface. Lastly, bioclogging and soil-water repellency from dehydrated microbial exudates are studied in terms of biotic changes in structure and surface properties that generate points of wetting instability that can result in the formation of persistent preferential flow paths.

Groundwater Contaminant Transport Modeling

Groundwater Contaminant Transport Modeling PDF Author: Venkatesh Uddameri
Publisher: CRC Press
ISBN: 9781138034617
Category :
Languages : en
Pages :

Get Book Here

Book Description
Groundwater contamination can present health risks to humans and other ecological receptors. This book introduces the fundamental concepts and principles of contaminant movement in subsurface environments. It presents a quantitative approach and describes the mathematical tools and methods for assessing exposures and risks from groundwater-related transport pathways. The practical calculations necessary for analyzing slug test data will be included, as well as how to delineate groundwater plumes, estimate natural attenuation, and evaluate different remediation technologies. It also utilizes integrated R programming environments throughout the book for hands-on and practical engagement.