Author: Lemont B. Kier
Publisher: Springer Science & Business Media
ISBN: 1402036906
Category : Science
Languages : en
Pages : 177
Book Description
Modeling Chemical Systems using Cellular Automata provides a practical introduction to an exciting modeling paradigm for complex systems. The book first discusses the nature of scientific inquiry using models and simulations, and then describes the nature of cellular automata models. It then gives detailed descriptions, with examples and exercises, of how cellular automata models can be used in the study of a wide variety chemical, physical, and biochemical phenomena. Topics covered include models of water itself, solution phenomena, solution interactions with stationary systems, first- and second-order kinetic phenomena, enzyme kinetics, vapor-liquid equilibrium, and atomic and molecular excited-state kinetics. The student experiences these systems through hands-on examples and guided studies. This book is the first of its kind: a textbook and a laboratory manual about cellular automata modeling of common systems in chemistry. The book is designed to be used as a text in undergraduate courses dealing with complex systems and/or as a computational supplement to laboratory courses taught at the undergraduate level. The book includes: - Compact descriptions of a large variety of physical and chemical phenomena - Illustrative examples of simulations, with exercises for further study - An instructor's manual for use of the program The book will be of great value in undergraduate courses in chemistry, physics, biology, applied mathematics, and bioinformatics, and as a supplement for laboratory courses in introductory chemistry, organic chemistry, physical chemistry, medicinal chemistry, chemical engineering and other courses dealing with statistical and dynamic systems. It allows the exploration of a wide range of dynamic phenomena, many of which are not normally accessible within conventional laboratory settings due to limitations of time, cost, and experimental equipment. The book is both a textbook on applied Cellular Automata and a lab manual for chemistry (physics, engineering) courses with lab activity. It would supplement other lab work and be an additonal book the students would use in the course. The authors have assessed the emerging need for this kind of activity in science labs because of the cost of the practical activitites and the frequent failure of some exercises leading to lost didactic value of some experiments. This book is pioneering an alternative that will grow in use. There are no course directors who would use Cellular Automata exclusively. The authors see an emerging interest in this kind of work in courses that contain lab exercises. One such course is the graduate course that Lemont Kier gives in Life Sciences about complexity. He uses many examples and studies from Cellular Automata in the latter part of this course.
Modeling Chemical Systems using Cellular Automata
Author: Lemont B. Kier
Publisher: Springer Science & Business Media
ISBN: 1402036906
Category : Science
Languages : en
Pages : 177
Book Description
Modeling Chemical Systems using Cellular Automata provides a practical introduction to an exciting modeling paradigm for complex systems. The book first discusses the nature of scientific inquiry using models and simulations, and then describes the nature of cellular automata models. It then gives detailed descriptions, with examples and exercises, of how cellular automata models can be used in the study of a wide variety chemical, physical, and biochemical phenomena. Topics covered include models of water itself, solution phenomena, solution interactions with stationary systems, first- and second-order kinetic phenomena, enzyme kinetics, vapor-liquid equilibrium, and atomic and molecular excited-state kinetics. The student experiences these systems through hands-on examples and guided studies. This book is the first of its kind: a textbook and a laboratory manual about cellular automata modeling of common systems in chemistry. The book is designed to be used as a text in undergraduate courses dealing with complex systems and/or as a computational supplement to laboratory courses taught at the undergraduate level. The book includes: - Compact descriptions of a large variety of physical and chemical phenomena - Illustrative examples of simulations, with exercises for further study - An instructor's manual for use of the program The book will be of great value in undergraduate courses in chemistry, physics, biology, applied mathematics, and bioinformatics, and as a supplement for laboratory courses in introductory chemistry, organic chemistry, physical chemistry, medicinal chemistry, chemical engineering and other courses dealing with statistical and dynamic systems. It allows the exploration of a wide range of dynamic phenomena, many of which are not normally accessible within conventional laboratory settings due to limitations of time, cost, and experimental equipment. The book is both a textbook on applied Cellular Automata and a lab manual for chemistry (physics, engineering) courses with lab activity. It would supplement other lab work and be an additonal book the students would use in the course. The authors have assessed the emerging need for this kind of activity in science labs because of the cost of the practical activitites and the frequent failure of some exercises leading to lost didactic value of some experiments. This book is pioneering an alternative that will grow in use. There are no course directors who would use Cellular Automata exclusively. The authors see an emerging interest in this kind of work in courses that contain lab exercises. One such course is the graduate course that Lemont Kier gives in Life Sciences about complexity. He uses many examples and studies from Cellular Automata in the latter part of this course.
Publisher: Springer Science & Business Media
ISBN: 1402036906
Category : Science
Languages : en
Pages : 177
Book Description
Modeling Chemical Systems using Cellular Automata provides a practical introduction to an exciting modeling paradigm for complex systems. The book first discusses the nature of scientific inquiry using models and simulations, and then describes the nature of cellular automata models. It then gives detailed descriptions, with examples and exercises, of how cellular automata models can be used in the study of a wide variety chemical, physical, and biochemical phenomena. Topics covered include models of water itself, solution phenomena, solution interactions with stationary systems, first- and second-order kinetic phenomena, enzyme kinetics, vapor-liquid equilibrium, and atomic and molecular excited-state kinetics. The student experiences these systems through hands-on examples and guided studies. This book is the first of its kind: a textbook and a laboratory manual about cellular automata modeling of common systems in chemistry. The book is designed to be used as a text in undergraduate courses dealing with complex systems and/or as a computational supplement to laboratory courses taught at the undergraduate level. The book includes: - Compact descriptions of a large variety of physical and chemical phenomena - Illustrative examples of simulations, with exercises for further study - An instructor's manual for use of the program The book will be of great value in undergraduate courses in chemistry, physics, biology, applied mathematics, and bioinformatics, and as a supplement for laboratory courses in introductory chemistry, organic chemistry, physical chemistry, medicinal chemistry, chemical engineering and other courses dealing with statistical and dynamic systems. It allows the exploration of a wide range of dynamic phenomena, many of which are not normally accessible within conventional laboratory settings due to limitations of time, cost, and experimental equipment. The book is both a textbook on applied Cellular Automata and a lab manual for chemistry (physics, engineering) courses with lab activity. It would supplement other lab work and be an additonal book the students would use in the course. The authors have assessed the emerging need for this kind of activity in science labs because of the cost of the practical activitites and the frequent failure of some exercises leading to lost didactic value of some experiments. This book is pioneering an alternative that will grow in use. There are no course directors who would use Cellular Automata exclusively. The authors see an emerging interest in this kind of work in courses that contain lab exercises. One such course is the graduate course that Lemont Kier gives in Life Sciences about complexity. He uses many examples and studies from Cellular Automata in the latter part of this course.
Cellular Automata Modeling of Physical Systems
Author: Bastien Chopard
Publisher: Cambridge University Press
ISBN: 0521461685
Category : Computers
Languages : en
Pages : 357
Book Description
Self-contained, pedagogic introduction to powerful techniques for graduate students and researchers in physics and computer science.
Publisher: Cambridge University Press
ISBN: 0521461685
Category : Computers
Languages : en
Pages : 357
Book Description
Self-contained, pedagogic introduction to powerful techniques for graduate students and researchers in physics and computer science.
Simulating Complex Systems by Cellular Automata
Author: Alfons G. Hoekstra
Publisher: Springer Science & Business Media
ISBN: 3642122027
Category : Computers
Languages : en
Pages : 392
Book Description
Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. Finally, we included a smaller section on software, to highlight the important work that has been done to create high quality problem solving environments that allow to quickly and relatively easily implement a CA model and run simulations, both on the desktop and if needed, on High Performance Computing infrastructures.
Publisher: Springer Science & Business Media
ISBN: 3642122027
Category : Computers
Languages : en
Pages : 392
Book Description
Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. Finally, we included a smaller section on software, to highlight the important work that has been done to create high quality problem solving environments that allow to quickly and relatively easily implement a CA model and run simulations, both on the desktop and if needed, on High Performance Computing infrastructures.
Designing Beauty: The Art of Cellular Automata
Author: Andrew Adamatzky
Publisher: Springer
ISBN: 3319272705
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to take on cellular automata as a tool of creativity and it persuades scientists to convert their research results into the works of art. The book is lavishly illustrated with visually attractive examples, presented in a lively and easily accessible manner.
Publisher: Springer
ISBN: 3319272705
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to take on cellular automata as a tool of creativity and it persuades scientists to convert their research results into the works of art. The book is lavishly illustrated with visually attractive examples, presented in a lively and easily accessible manner.
Cellular Automata Machines
Author: Tommaso Toffoli
Publisher: MIT Press
ISBN: 9780262200608
Category : Computers
Languages : en
Pages : 284
Book Description
Theory of Computation -- Computation by Abstracts Devices.
Publisher: MIT Press
ISBN: 9780262200608
Category : Computers
Languages : en
Pages : 284
Book Description
Theory of Computation -- Computation by Abstracts Devices.
Cellular Automata And Complexity
Author: Stephen Wolfram
Publisher: CRC Press
ISBN: 0429973721
Category : Mathematics
Languages : en
Pages : 615
Book Description
Are mathematical equations the best way to model nature? For many years it had been assumed that they were. But in the early 1980s, Stephen Wolfram made the radical proposal that one should instead build models that are based directly on simple computer programs. Wolfram made a detailed study of a class of such models known as cellular automata, and discovered a remarkable fact: that even when the underlying rules are very simple, the behaviour they produce can be highly complex, and can mimic many features of what we see in nature. And based on this result, Wolfram began a program of research to develop what he called A Science of Complexity."The results of Wolfram's work found many applications, from the so-called Wolfram Classification central to fields such as artificial life, to new ideas about cryptography and fluid dynamics. This book is a collection of Wolfram's original papers on cellular automata and complexity. Some of these papers are widely known in the scientific community others have never been published before. Together, the papers provide a highly readable account of what has become a major new field of science, with important implications for physics, biology, economics, computer science and many other areas.
Publisher: CRC Press
ISBN: 0429973721
Category : Mathematics
Languages : en
Pages : 615
Book Description
Are mathematical equations the best way to model nature? For many years it had been assumed that they were. But in the early 1980s, Stephen Wolfram made the radical proposal that one should instead build models that are based directly on simple computer programs. Wolfram made a detailed study of a class of such models known as cellular automata, and discovered a remarkable fact: that even when the underlying rules are very simple, the behaviour they produce can be highly complex, and can mimic many features of what we see in nature. And based on this result, Wolfram began a program of research to develop what he called A Science of Complexity."The results of Wolfram's work found many applications, from the so-called Wolfram Classification central to fields such as artificial life, to new ideas about cryptography and fluid dynamics. This book is a collection of Wolfram's original papers on cellular automata and complexity. Some of these papers are widely known in the scientific community others have never been published before. Together, the papers provide a highly readable account of what has become a major new field of science, with important implications for physics, biology, economics, computer science and many other areas.
Cellular Automata
Author: Howard Gutowitz
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Cellular Automaton Modeling of Biological Pattern Formation
Author: Andreas Deutsch
Publisher: Birkhäuser
ISBN: 1489979808
Category : Mathematics
Languages : en
Pages : 470
Book Description
This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews
Publisher: Birkhäuser
ISBN: 1489979808
Category : Mathematics
Languages : en
Pages : 470
Book Description
This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews
Self-Organizing Systems
Author: Thrasyvoulos Spyropoulos
Publisher: Springer Science & Business Media
ISBN: 3642108644
Category : Computers
Languages : en
Pages : 280
Book Description
We welcome you to the proceedings of the 4th International Workshop on Self-Organizing Systems (IWSOS 2009) hosted at ETH, Zurich, Switzerland. IWSOS provides an annual forum to present and discuss recent research in self-organization focused on networks and networked systems. Research in se- organizingnetworkedsystemshasadvancedinrecentyears,buttheinvestigation of its potentials and limits still leaves challenging and appealing open research issues for this and subsequent IWSOS workshops. Complexandheterogeneousnetworksmakeself-organizationhighlydesirable. Bene?ts envisioned by self-organization are the inherent robustness and ada- ability to new dynamic tra?c, topology changes, and scaling of networks. In - dition to an increasingly complex Future Internet, a number of domain-speci?c subnetworks bene?t from advances in self-organization, including wireless mesh networks, wireless sensor networks, and mobile ad-hoc networks, e.g., vehi- lar ad-hoc networks. Self-organization in networked systems is often inspired by other domains, such as nature (evolution theory, swarm intelligence), sociology (human cooperation), and economics (game theory). Aspects of controllability, engineering,testing,andmonitoringofself-organizingnetworksremainchalle- ing and are of particular interest to IWSOS. This year, we received 34 full paper and 27 short paper submissions. The highquality ofthe submissionsallowedus toprovideastrongtechnicalprogram.
Publisher: Springer Science & Business Media
ISBN: 3642108644
Category : Computers
Languages : en
Pages : 280
Book Description
We welcome you to the proceedings of the 4th International Workshop on Self-Organizing Systems (IWSOS 2009) hosted at ETH, Zurich, Switzerland. IWSOS provides an annual forum to present and discuss recent research in self-organization focused on networks and networked systems. Research in se- organizingnetworkedsystemshasadvancedinrecentyears,buttheinvestigation of its potentials and limits still leaves challenging and appealing open research issues for this and subsequent IWSOS workshops. Complexandheterogeneousnetworksmakeself-organizationhighlydesirable. Bene?ts envisioned by self-organization are the inherent robustness and ada- ability to new dynamic tra?c, topology changes, and scaling of networks. In - dition to an increasingly complex Future Internet, a number of domain-speci?c subnetworks bene?t from advances in self-organization, including wireless mesh networks, wireless sensor networks, and mobile ad-hoc networks, e.g., vehi- lar ad-hoc networks. Self-organization in networked systems is often inspired by other domains, such as nature (evolution theory, swarm intelligence), sociology (human cooperation), and economics (game theory). Aspects of controllability, engineering,testing,andmonitoringofself-organizingnetworksremainchalle- ing and are of particular interest to IWSOS. This year, we received 34 full paper and 27 short paper submissions. The highquality ofthe submissionsallowedus toprovideastrongtechnicalprogram.
Experimental and Computational Techniques in Soft Condensed Matter Physics
Author: Jeffrey Olafsen
Publisher: Cambridge University Press
ISBN: 113948981X
Category : Science
Languages : en
Pages : 339
Book Description
Soft condensed matter physics relies on a fundamental understanding at the interface between physics, chemistry, biology, and engineering for a host of materials and circumstances that are related to, but outside, the traditional definition of condensed matter physics. Featuring contributions from leading researchers in the field, this book uniquely discusses both the contemporary experimental and computational manifestations of soft condensed matter systems. From particle tracking and image analysis, novel materials and computational methods, to confocal microscopy and bacterial assays, this book will equip the reader for collaborative and interdisciplinary research efforts relating to a range of modern problems in nonlinear and non-equilibrium systems. It will enable both graduate students and experienced researchers to supplement a more traditional understanding of thermodynamics and statistical systems with knowledge of the techniques used in contemporary investigations. Color versions of a selection of the figures are available at www.cambridge.org/9780521115902.
Publisher: Cambridge University Press
ISBN: 113948981X
Category : Science
Languages : en
Pages : 339
Book Description
Soft condensed matter physics relies on a fundamental understanding at the interface between physics, chemistry, biology, and engineering for a host of materials and circumstances that are related to, but outside, the traditional definition of condensed matter physics. Featuring contributions from leading researchers in the field, this book uniquely discusses both the contemporary experimental and computational manifestations of soft condensed matter systems. From particle tracking and image analysis, novel materials and computational methods, to confocal microscopy and bacterial assays, this book will equip the reader for collaborative and interdisciplinary research efforts relating to a range of modern problems in nonlinear and non-equilibrium systems. It will enable both graduate students and experienced researchers to supplement a more traditional understanding of thermodynamics and statistical systems with knowledge of the techniques used in contemporary investigations. Color versions of a selection of the figures are available at www.cambridge.org/9780521115902.