Author: M.S. Rahman
Publisher: CRC Press
ISBN: 0429760213
Category : Mathematics
Languages : en
Pages : 507
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Modeling and Computing for Geotechnical Engineering
Author: M.S. Rahman
Publisher: CRC Press
ISBN: 0429760213
Category : Mathematics
Languages : en
Pages : 507
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Publisher: CRC Press
ISBN: 0429760213
Category : Mathematics
Languages : en
Pages : 507
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Modeling in Geotechnical Engineering
Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128218525
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work
Publisher: Academic Press
ISBN: 0128218525
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work
Modeling and Computing for Geotechnical Engineering
Author: M.S. Rahman
Publisher: CRC Press
ISBN: 0429760205
Category : Mathematics
Languages : en
Pages : 638
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Publisher: CRC Press
ISBN: 0429760205
Category : Mathematics
Languages : en
Pages : 638
Book Description
Modeling and computing is becoming an essential part of the analysis and design of an engineered system. This is also true of "geotechnical systems", such as soil foundations, earth dams and other soil-structure systems. The general goal of modeling and computing is to predict and understand the behaviour of the system subjected to a variety of possible conditions/scenarios (with respect to both external stimuli and system parameters), which provides the basis for a rational design of the system. The essence of this is to predict the response of the system to a set of external forces. The modelling and computing essentially involve the following three phases: (a) Idealization of the actual physical problem, (b) Formulation of a mathematical model represented by a set of equations governing the response of the system, and (c) Solution of the governing equations (often requiring numerical methods) and graphical representation of the numerical results. This book will introduce these phases. MATLAB® codes and MAPLE® worksheets are available for those who have bought the book. Please contact the author at [email protected] or [email protected]. Kindly provide the invoice number and date of purchase.
Modeling and Simulation Techniques in Structural Engineering
Author: Samui, Pijush
Publisher: IGI Global
ISBN: 152250589X
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.
Publisher: IGI Global
ISBN: 152250589X
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.
Numerical Methods in Geotechnical Engineering
Author: Thomas Benz
Publisher: CRC Press
ISBN: 0203842367
Category : Technology & Engineering
Languages : en
Pages : 970
Book Description
Numerical Methods in Geotechnical Engineering contains 153 scientific papers presented at the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2010, held at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, 2 4 June 2010.The contributions cover topics from emerging research to engineering pra
Publisher: CRC Press
ISBN: 0203842367
Category : Technology & Engineering
Languages : en
Pages : 970
Book Description
Numerical Methods in Geotechnical Engineering contains 153 scientific papers presented at the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2010, held at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, 2 4 June 2010.The contributions cover topics from emerging research to engineering pra
Finite Element Analysis in Geotechnical Engineering
Author: David M Potts
Publisher: Thomas Telford
ISBN: 9780727727831
Category : Mathematics
Languages : en
Pages : 456
Book Description
An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.
Publisher: Thomas Telford
ISBN: 9780727727831
Category : Mathematics
Languages : en
Pages : 456
Book Description
An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.
Matrix Discrete Element Analysis of Geological and Geotechnical Engineering
Author: Chun Liu
Publisher: Springer Nature
ISBN: 9813345241
Category : Science
Languages : en
Pages : 306
Book Description
This book introduces the basic structure, modeling methods, numerical calculation processes, post-processing, and system functions of MatDEM, which applies the basic principles and algorithm of the discrete element method. The discrete element method can effectively simulate the discontinuity, inhomogeneity, and large deformation damage of rock and soil. It is widely used in both research and industry. Based on the innovative matrix discrete element computing method, the author developed the high-performance discrete element software MatDEM from scratch, which can handle millions of elements in discrete element numerical simulations. This book also presents several examples of applications in geological and geotechnical engineering, including basic geotechnical engineering problems, discrete element tests, three dimensional landslides, and dynamic and multi-field coupling functions. Teaching videos and the relevant software can be accessed on the MATDEM website (http://matdem.com). The book serves as a useful reference for research and engineering staff, undergraduates, and postgraduates who work in the fields of geology, geotechnical, water conservancy, civil engineering, mining, and physics.
Publisher: Springer Nature
ISBN: 9813345241
Category : Science
Languages : en
Pages : 306
Book Description
This book introduces the basic structure, modeling methods, numerical calculation processes, post-processing, and system functions of MatDEM, which applies the basic principles and algorithm of the discrete element method. The discrete element method can effectively simulate the discontinuity, inhomogeneity, and large deformation damage of rock and soil. It is widely used in both research and industry. Based on the innovative matrix discrete element computing method, the author developed the high-performance discrete element software MatDEM from scratch, which can handle millions of elements in discrete element numerical simulations. This book also presents several examples of applications in geological and geotechnical engineering, including basic geotechnical engineering problems, discrete element tests, three dimensional landslides, and dynamic and multi-field coupling functions. Teaching videos and the relevant software can be accessed on the MATDEM website (http://matdem.com). The book serves as a useful reference for research and engineering staff, undergraduates, and postgraduates who work in the fields of geology, geotechnical, water conservancy, civil engineering, mining, and physics.
Modeling in Geomechanics
Author: Musharraf Zaman
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 748
Book Description
Modeling in Geomechanics Edited by Musharraf Zaman The University of Oklahoma, USA Giancarlo Gioda Politecnico di Milano, Italy John Booker University of Sydney, Australia Geomechanics is an interdisciplinary field involving the study of natural and man-made systems with emphasis on the mechanics of various interacting phenomena. It comprises numerous aspects of engineering and scientific disciplines, which share common bases in mathematics, mechanics and physics. In recent years, with the extraordinary growth of computing power and resources, progress in the generation of new theories and techniques for the analysis of geomechanics problems has far surpassed their actual use by practitioners. This has led to a gap between our ability to deal with complex, inter-disciplinary problems in geomechanics and the actual impact of these advances on engineering practice. This book contains contributions from an international group of accomplished researchers and practitioners from various branches of soil and rock engineering, and presents the latest theoretical developments and practical applications of modeling in geomechanics. Chapters are grouped into four main sections: * Computational procedures * Constitutive modeling and testing * Modeling and simulation * Applications Efforts have been made to include recent developments and provide suggestions and examples as to how these can be applied in modeling actual engineering problems. Researchers, practitioners and students in geomechanics, mechanics of solids, soil and rock engineering will find this book an invaluable reference.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 748
Book Description
Modeling in Geomechanics Edited by Musharraf Zaman The University of Oklahoma, USA Giancarlo Gioda Politecnico di Milano, Italy John Booker University of Sydney, Australia Geomechanics is an interdisciplinary field involving the study of natural and man-made systems with emphasis on the mechanics of various interacting phenomena. It comprises numerous aspects of engineering and scientific disciplines, which share common bases in mathematics, mechanics and physics. In recent years, with the extraordinary growth of computing power and resources, progress in the generation of new theories and techniques for the analysis of geomechanics problems has far surpassed their actual use by practitioners. This has led to a gap between our ability to deal with complex, inter-disciplinary problems in geomechanics and the actual impact of these advances on engineering practice. This book contains contributions from an international group of accomplished researchers and practitioners from various branches of soil and rock engineering, and presents the latest theoretical developments and practical applications of modeling in geomechanics. Chapters are grouped into four main sections: * Computational procedures * Constitutive modeling and testing * Modeling and simulation * Applications Efforts have been made to include recent developments and provide suggestions and examples as to how these can be applied in modeling actual engineering problems. Researchers, practitioners and students in geomechanics, mechanics of solids, soil and rock engineering will find this book an invaluable reference.
Engineering Modelling and Analysis
Author: David Walker
Publisher: CRC Press
ISBN: 1482266407
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
Introducing engineering students to numerical analysis and computing, this book covers a range of topics suitable for the first three years of a four year undergraduate engineering degree. The teaching of computing to engineers is hampered by the lack of suitable problems for the students to tackle, so much effort has gone into making the problems in this book realistic and relevant, while at the same time solvable for undergraduates. Taking a balanced approach to teaching computing and computer methods at the same time, this book satisfies the need to be able to use computers (using both formal languages such as Fortran and other applications such as Matlab and Microsoft Excel), and the need to be able to solve realistic engineering problems.
Publisher: CRC Press
ISBN: 1482266407
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
Introducing engineering students to numerical analysis and computing, this book covers a range of topics suitable for the first three years of a four year undergraduate engineering degree. The teaching of computing to engineers is hampered by the lack of suitable problems for the students to tackle, so much effort has gone into making the problems in this book realistic and relevant, while at the same time solvable for undergraduates. Taking a balanced approach to teaching computing and computer methods at the same time, this book satisfies the need to be able to use computers (using both formal languages such as Fortran and other applications such as Matlab and Microsoft Excel), and the need to be able to solve realistic engineering problems.
Correlations of Soil and Rock Properties in Geotechnical Engineering
Author: Jay Ameratunga
Publisher: Springer
ISBN: 8132226291
Category : Science
Languages : en
Pages : 236
Book Description
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.
Publisher: Springer
ISBN: 8132226291
Category : Science
Languages : en
Pages : 236
Book Description
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.