Mixing Sequences of Random Variables and Probabilistic Number Theory

Mixing Sequences of Random Variables and Probabilistic Number Theory PDF Author: Walter Philipp
Publisher: American Mathematical Soc.
ISBN: 0821818147
Category : Additive functions
Languages : en
Pages : 108

Get Book Here

Book Description
The author gives a solution to the central limit problem and proves several forms of the iterated logarithm theorem and the results are then applied to the following branches of number theory: limit theorems for continued fractions and related algorithms; limit theorems in Diophantine approximations; discrepancies of sequences uniformly distributed mod one and the distribution of additive functions. In addition to new results, the major contribution of the work is the unification of the listed branches of probabilistic number theory. In particular, this is the first time that the distribution theory of additive functions has been related to metric number theory.

Mixing Sequences of Random Variables and Probabilistic Number Theory

Mixing Sequences of Random Variables and Probabilistic Number Theory PDF Author: Walter Philipp
Publisher: American Mathematical Soc.
ISBN: 0821818147
Category : Additive functions
Languages : en
Pages : 108

Get Book Here

Book Description
The author gives a solution to the central limit problem and proves several forms of the iterated logarithm theorem and the results are then applied to the following branches of number theory: limit theorems for continued fractions and related algorithms; limit theorems in Diophantine approximations; discrepancies of sequences uniformly distributed mod one and the distribution of additive functions. In addition to new results, the major contribution of the work is the unification of the listed branches of probabilistic number theory. In particular, this is the first time that the distribution theory of additive functions has been related to metric number theory.

Probabilistic Number Theory I

Probabilistic Number Theory I PDF Author: P.D.T.A. Elliott
Publisher: Springer Science & Business Media
ISBN: 1461299896
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
In 1791 Gauss made the following assertions (collected works, Vol. 10, p.ll, Teubner, Leipzig 1917): Primzahlen unter a (= 00) a la Zahlen aus zwei Factoren lla· a la (warsch.) aus 3 Factoren 1 (lla)2a -- 2 la et sic in info In more modern notation, let 1tk(X) denote the number of integers not exceeding x which are made up of k distinct prime factors, k = 1, 2 ... Then his assertions amount to the asymptotic estimate x (log log X)k-l () 1tk X '"--"';"'-"--"::--:-'-, - (x-..oo). log x (k-1)! The case k = 1, known as the Prime Number Theorem, was independently established by Hadamard and de la Vallee Poussin in 1896, just over a hundred years later. The general case was deduced by Landau in 1900; it needs only an integration by parts. Nevertheless, one can scarcely say that Probabilistic Number Theory began with Gauss. In 1914 the Indian original mathematician Srinivasa Ramanujan arrived in England. Six years of his short life remained to him during which he wrote, amongst other things, five papers and two notes jointly with G.H. Hardy

Probabilistic Number Theory II

Probabilistic Number Theory II PDF Author: P.D.T.A. Elliott
Publisher: Springer Science & Business Media
ISBN: 1461299926
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
In this volume we study the value distribution of arithmetic functions, allowing unbounded renormalisations. The methods involve a synthesis of Probability and Number Theory; sums of independent infinitesimal random variables playing an important role. A central problem is to decide when an additive arithmetic function fin) admits a renormalisation by real functions a(x) and {3(x) > 0 so that asx ~ 00 the frequencies vx(n;f (n) - a(x) :s;; z {3 (x) ) converge weakly; (see Notation). In contrast to volume one we allow {3(x) to become unbounded with x. In particular, we investigate to what extent one can simulate the behaviour of additive arithmetic functions by that of sums of suit ably defined independent random variables. This fruiful point of view was intro duced in a 1939 paper of Erdos and Kac. We obtain their (now classical) result in Chapter 12. Subsequent methods involve both Fourier analysis on the line, and the appli cation of Dirichlet series. Many additional topics are considered. We mention only: a problem of Hardy and Ramanujan; local properties of additive arithmetic functions; the rate of convergence of certain arithmetic frequencies to the normal law; the arithmetic simulation of all stable laws. As in Volume I the historical background of various results is discussed, forming an integral part of the text. In Chapters 12 and 19 these considerations are quite extensive, and an author often speaks for himself.

An Introduction to Probabilistic Number Theory

An Introduction to Probabilistic Number Theory PDF Author: Emmanuel Kowalski
Publisher: Cambridge University Press
ISBN: 1108899560
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.

Proceedings of the International Congress of Matematics 14-21 August 1958

Proceedings of the International Congress of Matematics 14-21 August 1958 PDF Author:
Publisher: CUP Archive
ISBN:
Category :
Languages : en
Pages : 648

Get Book Here

Book Description


High Dimensional Probability VII

High Dimensional Probability VII PDF Author: Christian Houdré
Publisher: Birkhäuser
ISBN: 3319405195
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.

Probability Theory on Vector Spaces III

Probability Theory on Vector Spaces III PDF Author: D Szynal
Publisher: Springer
ISBN: 3540389393
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description


Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables

Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables PDF Author: Walter Philipp
Publisher: American Mathematical Soc.
ISBN: 0821818619
Category : Invariance
Languages : en
Pages : 146

Get Book Here

Book Description
A strong revival of interest in the law of the iterated logarithm and related asymptotic fluctuation results has occurred in the last decade, stimulated by two remarkable papers by Volker Strassen. In these papers, Strassen introduces a new method for establishing such fluctuation results for sums of independent random variables and for martingales. Strassen's almost sure invariance principle for martingales states that each martingale satisfying a certain second moment condition is with probability on "close" to a Brownian motion. In this monograph we investigate the asymptotic fluctuation behavior of sums of weakly dependent random variables, such as lacunary trigonometric mixing, and Gaussian sequences.

Probability Theory and Mathematical Statistics

Probability Theory and Mathematical Statistics PDF Author: B. Grigelionis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311231932X
Category : Mathematics
Languages : en
Pages : 752

Get Book Here

Book Description
No detailed description available for "Probability Theory and Mathematical Statistics".

Proceedings of the Seventh Conference on Probability Theory

Proceedings of the Seventh Conference on Probability Theory PDF Author: Marius Iosifescu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112314034
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
No detailed description available for "Proceedings of the Seventh Conference on Probability Theory".