Minimal Surfaces. Part 1 - The Art

Minimal Surfaces. Part 1 - The Art PDF Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 75

Get Book Here

Book Description
A two-part book on the exploration of minimal surfaces. In mathematics, a minimal surface is a surface for which the mean curvature H is zero at all points. These elegant and complex shapes found in Nature from butterflies, beetles, or black holes are studied today in statistics, material sciences, and architecture. I explored this singular shape from the perspective of a visual artist for 52 weeks, January-December 2021. Inspiring in many ways, the esthetics of these complex equations borne in the minds of brilliant scientists add a unique all-encompassing perspective to shapes and objects also found in Nature. I structured the project into part 1 – the art inspired by the shape- and part 2 - the plain visualization of the equations that stand in their own right as a beautiful expression of a mathematical mind at work. I included the informal log I kept throughout the journey in both parts. In part 2, I added the mathematical background that helped me understand the particular shape I was working on. Both sides complement each other in helping us appreciate these unrivaled original expressions of our environment.

Minimal Surfaces. Part 1 - The Art

Minimal Surfaces. Part 1 - The Art PDF Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 75

Get Book Here

Book Description
A two-part book on the exploration of minimal surfaces. In mathematics, a minimal surface is a surface for which the mean curvature H is zero at all points. These elegant and complex shapes found in Nature from butterflies, beetles, or black holes are studied today in statistics, material sciences, and architecture. I explored this singular shape from the perspective of a visual artist for 52 weeks, January-December 2021. Inspiring in many ways, the esthetics of these complex equations borne in the minds of brilliant scientists add a unique all-encompassing perspective to shapes and objects also found in Nature. I structured the project into part 1 – the art inspired by the shape- and part 2 - the plain visualization of the equations that stand in their own right as a beautiful expression of a mathematical mind at work. I included the informal log I kept throughout the journey in both parts. In part 2, I added the mathematical background that helped me understand the particular shape I was working on. Both sides complement each other in helping us appreciate these unrivaled original expressions of our environment.

Polyverse

Polyverse PDF Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 76

Get Book Here

Book Description
A 52-illustration, notes, and references book exploring the geometry of H. Coxeter surfaces. Coxeter was instrumental in many discoveries in the field of geometry and computer sciences. He opened the door to the 4th dimension to all studying higher spaces. Exploring these groups has some practical applications in mineralogy, architecture, linear programming, and other areas; mostly, people enjoy contemplating the figures because of their symmetrical shapes and aesthetic appeal. For artists, it is a limitless trove of inspiration. This illustrated book results from some of the most striking Coxeter examples of geometry in higher dimensions.

Prime Number Geometry

Prime Number Geometry PDF Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 91

Get Book Here

Book Description
The 52 Illustration Prime Number series is a new chapter in the ongoing Math-Art collection exploring the world of mathematics and art. Inspired by the research of mathematicians from yesterday and today, this project aims to explore the visual aspect of numbers and highlight the unexpected connections between the challenging world of calculus, geometry, and art. Some will find references to ethnomathematics or a reflection on the universal cross-cultural appeal of mathematics; others will find a relation with the world we’re mapping for tomorrow, and hopefully, all will enjoy this unexpected interpretation of numbers from an artistic standpoint.

Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems

Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems PDF Author: Johannes C. C. Nitsche
Publisher:
ISBN: 9780521244275
Category : Mathematics
Languages : en
Pages : 563

Get Book Here

Book Description
This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.

Minimal Surfaces I

Minimal Surfaces I PDF Author: Ulrich Dierkes
Publisher: Springer Science & Business Media
ISBN: 3662027917
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.

Regularity of Minimal Surfaces

Regularity of Minimal Surfaces PDF Author: Ulrich Dierkes
Publisher: Springer Science & Business Media
ISBN: 3642117007
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.

Minimal Surfaces and Functions of Bounded Variation

Minimal Surfaces and Functions of Bounded Variation PDF Author: Giusti
Publisher: Springer Science & Business Media
ISBN: 1468494864
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].

Minimal Surfaces from a Complex Analytic Viewpoint

Minimal Surfaces from a Complex Analytic Viewpoint PDF Author: Antonio Alarcón
Publisher: Springer Nature
ISBN: 3030690563
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.

Proceedings of the American Academy of Arts and Sciences

Proceedings of the American Academy of Arts and Sciences PDF Author: American Academy of Arts and Sciences
Publisher:
ISBN:
Category : Humanities
Languages : en
Pages : 946

Get Book Here

Book Description


 PDF Author: Dennis G. Zill
Publisher: Jones & Bartlett Publishers
ISBN: 0763782416
Category :
Languages : en
Pages : 1005

Get Book Here

Book Description
Now with a full-color design, the new Fourth Edition of Zill's Advanced Engineering Mathematics provides an in-depth overview of the many mathematical topics necessary for students planning a career in engineering or the sciences. A key strength of this text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fourth Edition is comprehensive, yet flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. Numerous new projects contributed by esteemed mathematicians have been added. New modern applications and engaging projects makes Zill's classic text a must-have text and resource for Engineering Math students!