Autonomous Robot-Aided Optical Manipulation for Biological Cells

Autonomous Robot-Aided Optical Manipulation for Biological Cells PDF Author: Mingyang Xie
Publisher: Academic Press
ISBN: 0128235926
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
Autonomous Robot-Aided Optical Manipulation for Biological Cells gives a systematically and almost self-contained description of the many facets of modeling, sensing, and control techniques or experimentally exploring emerging trends in optical manipulation of biological cell in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are vitally important for the development of engineering systems. With the advances in modeling, sensing, and control techniques, it is opportunistic to exploit them for the benefit of reliability design, actuation, and precision control of micro/nanomanipulation systems to expanding the applications of robot at the micro and nano scales, especially in biomedical engineering. This book presents new techniques in reliability modeling and advanced control of robot-aided optical manipulation of biological cells systems. The book will be beneficial to the researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts. - Provides a series of latest results in, including but not limited to, design, sensing, actuation, modeling, and control of micro/nano manipulation system using optical tweezers - Gives recent advances of theory, technological aspects, and applications of advanced sensing, actuation, modeling and control methodologies in biomedical engineering applications - Offers simulation and experimental results in each chapter in order to reflect the biomedical engineering practice, yet demonstrate the main focus of the developed design, analysis and synthesis approaches

Autonomous Robot-Aided Optical Manipulation for Biological Cells

Autonomous Robot-Aided Optical Manipulation for Biological Cells PDF Author: Mingyang Xie
Publisher: Academic Press
ISBN: 0128235926
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
Autonomous Robot-Aided Optical Manipulation for Biological Cells gives a systematically and almost self-contained description of the many facets of modeling, sensing, and control techniques or experimentally exploring emerging trends in optical manipulation of biological cell in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are vitally important for the development of engineering systems. With the advances in modeling, sensing, and control techniques, it is opportunistic to exploit them for the benefit of reliability design, actuation, and precision control of micro/nanomanipulation systems to expanding the applications of robot at the micro and nano scales, especially in biomedical engineering. This book presents new techniques in reliability modeling and advanced control of robot-aided optical manipulation of biological cells systems. The book will be beneficial to the researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts. - Provides a series of latest results in, including but not limited to, design, sensing, actuation, modeling, and control of micro/nano manipulation system using optical tweezers - Gives recent advances of theory, technological aspects, and applications of advanced sensing, actuation, modeling and control methodologies in biomedical engineering applications - Offers simulation and experimental results in each chapter in order to reflect the biomedical engineering practice, yet demonstrate the main focus of the developed design, analysis and synthesis approaches

Robotic Cell Manipulation

Robotic Cell Manipulation PDF Author: Dong Sun
Publisher: Academic Press
ISBN: 0323852602
Category : Technology & Engineering
Languages : en
Pages : 548

Get Book Here

Book Description
Robotic Cell Manipulation introduces up-to-date research to realize this new theme of medical robotics. The book is organized in three levels: operation tools (e.g., optical tweezers, microneedles, dielectrophoresis, electromagnetic devices, and microfluidic chips), manipulation types (e.g., microinjection, transportation, rotation fusion, adhesion, separation, etc.), and potential medical applications (e.g., micro-surgery, biopsy, gene editing, cancer treatment, cell-cell interactions, etc.). The technology involves different fields such as robotics, automation, imaging, microfluidics, mechanics, materials, biology and medical sciences. The book provides systematic knowledge on the subject, covering a wide range of basic concepts, theories, methodology, experiments, case studies and potential medical applications. It will enable readers to promptly conduct a systematic review of research and become an essential reference for many new and experienced researchers entering this unique field. - Introduces the applications of robot-assisted manipulation tools in various cell manipulation tasks - Defines many essential concepts in association with the robotic cell manipulation field, including manipulation strategy and manipulation types - Introduces basic concepts and knowledge on various manipulation devices and tasks - Describes some cutting-edge cell manipulation technologies and case studies

Robotic Micromanipulation of Zebrafish Larva

Robotic Micromanipulation of Zebrafish Larva PDF Author: Songlin Zhuang
Publisher: Springer Nature
ISBN: 3031334108
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
This book offers readers a series of robotic methods for manipulating zebrafish larva, one of the most popular model vertebrates widely used in biomedical research and clinical applications. The authors leverage advanced control theories, image processing algorithms, and artificial intelligence to establish a robot-assisted automated or semi-automated zebrafish larva-targeted micromanipulation system for different experimental purposes. The methods presented are generic and can be translated to manipulate other types of biological objects, such as embryos or cells. Coverage includes topics that span the procedures of manipulating zebrafish larva, such as in-plane positioning, three-dimensional orientation, deformation-controllable immobilization, organ-targeted microinjection, whole-organism imaging, and high-throughput trajectory tracking of zebrafish larvae group movement. Robotic Micromanipulation of Zebrafish Larva is written in a simple, clear, and easy-to-read style. It is an ideal reference for academic researchers and biomedical operators. It is also a valuable resource for students learning robotics, control and system theories, image processing, artificial intelligence, and biomedical engineering.

Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture

Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture PDF Author: Mingyang Xie
Publisher: CRC Press
ISBN: 1000880389
Category : Technology & Engineering
Languages : en
Pages : 202

Get Book Here

Book Description
Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture gives a systematic and almost self-contained description of the many facets of advanced design, optimization, modeling, system identification, and advanced control techniques for positioning of the cell puncture mechanism with a piezoelectric actuator in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are essential for developing engineering systems. With the advances in mechanical design, dynamic modeling, system identification, and control techniques, it is possible to expand the advancements in reliability design, precision control, and quick actuation of micro/nanomanipulation systems to the robot’s applications at the micro- and nanoscales, especially for biomedical applications. This book unifies existing and emerging techniques concerning advanced design, modeling, and advanced control methodologies in micropuncture of biological cells using piezoelectric actuators with their practical biomedical applications. The book is an essential resource for researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts. KEY FEATURES • Provides a series of latest results in, including but not limited to, design, modeling, and control of micro/nanomanipulation systems utilizing piezoelectric actuators • Gives recent advances of theory, technological aspects, and applications of advanced modeling, control, and actuation methodologies in cell engineering applications • Presents simulation and experimental results to reflect the micro/nano manipulation practice and validate the performances of the developed design, analysis, and synthesis approaches

Selected Topics in Micro/Nano-robotics for Biomedical Applications

Selected Topics in Micro/Nano-robotics for Biomedical Applications PDF Author: Yi Guo
Publisher: Springer Science & Business Media
ISBN: 1441984119
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials in micro/nanorobotics for biomedical applications. The book features lecture units on micro/nanorobot components and techniques, including sensors, actuator, power supply, and micro/nano-fabrication and assembly. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Laboratory modules to teach robot navigation and cooperation methods suitable to biomedical applications will be also provided based on existing simulation and robot platforms.

Robotics for Cell Manipulation and Characterization

Robotics for Cell Manipulation and Characterization PDF Author: Changsheng Dai
Publisher: Elsevier
ISBN: 0323952143
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers' comprehension and pinpoint challenges and opportunities for biological and biomedical research. - Focuses on, and comprehensively covers, robotics for cell manipulation and characterization - Highlights recent advances in cell biology and disease treatment enabled by robotic cell manipulation and characterization - Provides insightful outlooks on future challenges and opportunities

Micromachines for Biological Micromanipulation

Micromachines for Biological Micromanipulation PDF Author: Qingsong Xu
Publisher: Springer
ISBN: 3319746219
Category : Technology & Engineering
Languages : en
Pages : 233

Get Book Here

Book Description
This book provides an overview of the noteworthy developments in the field of micromachining, with a specific focus on microinjection systems used for biological micromanipulation. The author also explores the design, development, and fabrication of new mechanical designs for micromachines, with plenty of examples that elucidate their modeling and control. The design and fabrication of a piezoelectric microinjector, constant force microinjector, constant force microgripper, PDVF microforce sensor, and a piezoelectric microsyringe are presented as examples of new technology for microinjection systems. This book is appropriate for both researchers and advanced students in bioengineering.

Biologically Inspired Robotics

Biologically Inspired Robotics PDF Author: Yunhui Liu
Publisher: CRC Press
ISBN: 1439854882
Category : Medical
Languages : en
Pages : 343

Get Book Here

Book Description
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.

Optical Trapping and Manipulation of Neutral Particles Using Lasers

Optical Trapping and Manipulation of Neutral Particles Using Lasers PDF Author: Arthur Ashkin
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789810240578
Category : Science
Languages : en
Pages : 915

Get Book Here

Book Description
This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.

Encyclopedia Of Medical Robotics, The (In 4 Volumes)

Encyclopedia Of Medical Robotics, The (In 4 Volumes) PDF Author:
Publisher: World Scientific
ISBN: 9813232242
Category : Medical
Languages : en
Pages : 1555

Get Book Here

Book Description
The Encyclopedia of Medical Robotics combines contributions in four distinct areas of Medical robotics, namely: Minimally Invasive Surgical Robotics, Micro and Nano Robotics in Medicine, Image-guided Surgical Procedures and Interventions, and Rehabilitation Robotics. The volume on Minimally Invasive Surgical Robotics focuses on robotic technologies geared towards challenges and opportunities in minimally invasive surgery and the research, design, implementation and clinical use of minimally invasive robotic systems. The volume on Micro and Nano robotics in Medicine is dedicated to research activities in an area of emerging interdisciplinary technology that is raising new scientific challenges and promising revolutionary advancement in applications such as medicine and biology. The size and range of these systems are at or below the micrometer scale and comprise assemblies of micro and nanoscale components. The volume on Image-guided Surgical Procedures and Interventions focuses primarily on the use of image guidance during surgical procedures and the challenges posed by various imaging environments and how they related to the design and development of robotic systems as well as their clinical applications. This volume also has significant contributions from the clinical viewpoint on some of the challenges in the domain of image-guided interventions. Finally, the volume on Rehabilitation Robotics is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to re-learn, improve, or restore functional movements in humans.Volume 1, Minimally Invasive Surgical Robotics, focuses on an area of robotic applications that was established in the late 1990s, after the first robotics-assisted minimally invasive surgical procedure. This area has since received significant attention from industry and researchers. The teleoperated and ergonomic features of these robotic systems for minimally invasive surgery (MIS) have been able to reduce or eliminate most of the drawbacks of conventional (laparoscopic) MIS. Robotics-assisted MIS procedures have been conducted on over 3 million patients to date — primarily in the areas of urology, gynecology and general surgery using the FDA approved da Vinci® surgical system. The significant commercial and clinical success of the da Vinci® system has resulted in substantial research activity in recent years to reduce invasiveness, increase dexterity, provide additional features such as image guidance and haptic feedback, reduce size and cost, increase portability, and address specific clinical procedures. The area of robotic MIS is therefore in a state of rapid growth fueled by new developments in technologies such as continuum robotics, smart materials, sensing and actuation, and haptics and teleoperation. An important need arising from the incorporation of robotic technology for surgery is that of training in the appropriate use of the technology, and in the assessment of acquired skills. This volume covers the topics mentioned above in four sections. The first section gives an overview of the evolution and current state the da Vinci® system and clinical perspectives from three groups who use it on a regular basis. The second focuses on the research, and describes a number of new developments in surgical robotics that are likely to be the basis for the next generation of robotic MIS systems. The third deals with two important aspects of surgical robotic systems — teleoperation and haptics (the sense of touch). Technology for implementing the latter in a clinical setting is still very much at the research stage. The fourth section focuses on surgical training and skills assessment necessitated by the novelty and complexity of the technologies involved and the need to provide reliable and efficient training and objective assessment in the use of robotic MIS systems.In Volume 2, Micro and Nano Robotics in Medicine, a brief historical overview of the field of medical nanorobotics as well as the state-of-the-art in the field is presented in the introductory chapter. It covers the various types of nanorobotic systems, their applications and future directions in this field. The volume is divided into three themes related to medical applications. The first theme describes the main challenges of microrobotic design for propulsion in vascular media. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this section, a collection of four papers review the potential medical applications of motile nanorobots, catalytic-based propelling agents, biologically-inspired microrobots and nanoscale bacteria-enabled autonomous drug delivery systems. The second theme relates to the use of micro and nanorobots inside the body for drug-delivery and surgical applications. A collection of six chapters is presented in this segment. The first chapter reviews the different robot structures for three different types of surgery, namely laparoscopy, catheterization, and ophthalmic surgery. It highlights the progress of surgical microrobotics toward intracorporeally navigated mechanisms for ultra-minimally invasive interventions. Then, the design of different magnetic actuation platforms used in micro and nanorobotics are described. An overview of magnetic actuation-based control methods for microrobots, with eventually biomedical applications, is also covered in this segment. The third theme discusses the various nanomanipulation strategies that are currently used in biomedicine for cell characterization, injection, fusion and engineering. In-vitro (3D) cell culture has received increasing attention since it has been discovered to provide a better simulation environment of in-vivo cell growth. Nowadays, the rapid progress of robotic technology paves a new path for the highly controllable and flexible 3D cell assembly. One chapter in this segment discusses the applications of micro-nano robotic techniques for 3D cell culture using engineering approaches. Because cell fusion is important in numerous biological events and applications, such as tissue regeneration and cell reprogramming, a chapter on robotic-tweezers cell manipulation system to achieve precise laser-induced cell fusion using optical trapping has been included in this volume. Finally, the segment ends with a chapter on the use of novel MEMS-based characterization of micro-scale tissues instead of mechanical characterization for cell lines studies.Volume 3, Image-guided Surgical Procedures and Interventions, focuses on several aspects ranging from understanding the challenges and opportunities in this domain, to imaging technologies, to image-guided robotic systems for clinical applications. The volume includes several contributions in the area of imaging in the areas of X-Ray fluoroscopy, CT, PET, MR Imaging, Ultrasound imaging, and optical coherence tomography. Ultrasound-based diagnostics and therapeutics as well as ultrasound-guided planning and navigation are also included in this volume in addition to multi-modal imaging techniques and its applications to surgery and various interventions. The application of multi-modal imaging and fusion in the area of prostate biopsy is also covered. Imaging modality compatible robotic systems, sensors and actuator technologies for use in the MRI environment are also included in this work., as is the development of the framework incorporating image-guided modeling for surgery and intervention. Finally, there are several chapters in the clinical applications domain covering cochlear implant surgery, neurosurgery, breast biopsy, prostate cancer treatment, endovascular interventions, neurovascular interventions, robotic capsule endoscopy, and MRI-guided neurosurgical procedures and interventions.Volume 4, Rehabilitation Robotics, is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to relearn, improve, or restore functional movements in humans. This volume attempts to cover a number of topics relevant to the field. The first section addresses an important activity in our daily lives: walking, where the neuromuscular system orchestrates the gait, posture, and balance. Conditions such as stroke, vestibular deficits, or old age impair this important activity. Three chapters on robotic training, gait rehabilitation, and cooperative orthoses describe the current works in the field to address this issue. The second section covers the significant advances in and novel designs of soft actuators and wearable systems that have emerged in the area of prosthetic lower limbs and ankles in recent years, which offer potential for both rehabilitation and human augmentation. These are described in two chapters. The next section addresses an important emphasis in the field of medicine today that strives to bring rehabilitation out from the clinic into the home environment, so that these medical aids are more readily available to users. The current state-of-the-art in this field is described in a chapter. The last section focuses on rehab devices for the pediatric population. Their impairments are life-long and rehabilitation robotics can have an even bigger impact during their lifespan. In recent years, a number of new developments have been made to promote mobility, socialization, and rehabilitation among the very young: the infants and toddlers. These aspects are summarized in two chapters of this volume.