Microbeam Analysis in Biology

Microbeam Analysis in Biology PDF Author: Claude Lechene
Publisher: Elsevier
ISBN: 0323143342
Category : Nature
Languages : en
Pages : 695

Get Book Here

Book Description
Microbeam Analysis in Biology contains the proceedings of a workshop on Biological X-Ray Microanalysis by Electron Beam Excitation, held in Boston, Massachusetts on August 25-26, 1977. This book focuses on the principles, techniques, and biological use of electron probe microanalysis, energy-loss spectroscopy, and ion probe microanalysis. This text reflects the emphasis of the workshop on presenting the principles of analysis, the optimization of operating conditions, the description of successful techniques for sample preparation and quantitation, the illustration of problems and pitfalls, and the direction of microbeam analysis in biology.

Microbeam Analysis in Biology

Microbeam Analysis in Biology PDF Author: Claude Lechene
Publisher: Elsevier
ISBN: 0323143342
Category : Nature
Languages : en
Pages : 695

Get Book Here

Book Description
Microbeam Analysis in Biology contains the proceedings of a workshop on Biological X-Ray Microanalysis by Electron Beam Excitation, held in Boston, Massachusetts on August 25-26, 1977. This book focuses on the principles, techniques, and biological use of electron probe microanalysis, energy-loss spectroscopy, and ion probe microanalysis. This text reflects the emphasis of the workshop on presenting the principles of analysis, the optimization of operating conditions, the description of successful techniques for sample preparation and quantitation, the illustration of problems and pitfalls, and the direction of microbeam analysis in biology.

Microprobe Analysis of Biological Systems

Microprobe Analysis of Biological Systems PDF Author: Thomas Hutchinson
Publisher: Elsevier
ISBN: 0323150195
Category : Nature
Languages : en
Pages : 443

Get Book Here

Book Description
Microprobe Analysis of Biological Systems covers the proceedings of the 1980 Microprobe Analysis of Biological Systems conference held at Battelle Conference Center in Seattle, Washington. Most of the major laboratories in the field of biological microanalysis in the United States, England, Scotland, France, and Germany are represented. The conference presents the findings, theories, techniques, and procedures of the laboratory represented, no matter how tentative and exploratory. This book is divided into four parts encompassing 22 chapters that focus on biological applications of microprobe analysis. The introductory part describes the application of electron microprobe and X-ray microanalyses in studies of epithelial transport, avian salt gland, electrolyte transport, and acrosome reaction. The subsequent part covers the application of microprobe techniques in the analysis of cardiac, skeletal, vascular smooth, and freeze-dried muscles. It also describes a method for obtaining erythrocyte preparations for validating biological microprobe methods and the continuum-fluorescence effect on thick biological tissue. The method using freeze-substitution to localize calcium in quick-frozen tissue for X-ray microanalysis is also explained. The third part of the book tackles the principles, basic features, and applications of electron energy-loss spectroscopy. Discussions on the use of inner-shell signals for a quantitative local microanalysis technique; theoretical study of the energy resolution; and collection efficiency of a magnetic spectrometer are also included. The final part covers the elemental distribution in single erythrocytes using X-ray microanalysis. It also discusses the fundamentals of cryosectioning process for X-ray microanalysis of diffusible elements and the freezing behavior of a number of chemically different gels chosen for their partial resemblance to biological structures. Considerable chapters contain materials and methods, results, discussions, conclusions, and references. This book will be of value to scientists interested in elemental and ion transport within cells and between cells and extracellular compartments.

Micromanipulation by Light in Biology and Medicine

Micromanipulation by Light in Biology and Medicine PDF Author: Karl Otto Greulich
Publisher: Springer Science & Business Media
ISBN: 1461241103
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
There are probably few people who do not dream of the good old times, when do ing science often meant fascination, excitement, even adventure. In our time, do ing science involves often technology and, perhaps, even business. But there are still niches where curiosity and fascination have their place. The subject of this book, technological as its title may sound, is one of the fortunate examples. It will report on lasers generating the coldest places in the Universe, and on table top laser microtools which can produce a heat "inferno" as it prevails in the interior of the Sun, or simulate, for specific plant cells, microgravity of the space around our plan et Earth. There will be some real surprises for the reader. The applications range from basic studies of the driving forces of cell division (and thus life) via genetic modification of cells (for example, for plant breeding) to medical applications such as blood cell analysis and finally in vitro fertilization. What are these instruments: laser microbeams and optical tweezers? Both are lasers coupled with a fluorescence microscope. The laser microbeam uses a pulsed ultraviolet laser. Light is focused, as well as possible, in space and time, in order to obtain extremely high light intensities - high enough to generate, for a very short instant, extremely hot spots which can be used to cut, fuse or perforate biological material.

X-ray Microanalysis in Biology

X-ray Microanalysis in Biology PDF Author: David C. Sigee
Publisher: Cambridge University Press
ISBN: 9780521415309
Category : Medical
Languages : en
Pages : 356

Get Book Here

Book Description
This book describes an integrated approach to the use of X-ray microanalysis in biology.

Principles of Analytical Electron Microscopy

Principles of Analytical Electron Microscopy PDF Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1489920374
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
Since the publication in 1979 of Introduction to Analytical Electron Microscopy (ed. J. J. Hren, J. I. Goldstein, and D. C. Joy; Plenum Press), analytical electron microscopy has continued to evolve and mature both as a topic for fundamental scientific investigation and as a tool for inorganic and organic materials characterization. Significant strides have been made in our understanding of image formation, electron diffraction, and beam/specimen interactions, both in terms of the "physics of the processes" and their practical implementation in modern instruments. It is the intent of the editors and authors of the current text, Principles of Analytical Electron Microscopy, to bring together, in one concise and readily accessible volume, these recent advances in the subject. The text begins with a thorough discussion of fundamentals to lay a foundation for today's state-of-the-art microscopy. All currently important areas in analytical electron microscopy-including electron optics, electron beam/specimen interactions, image formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and specimen effects-have been given thorough attention. To increase the utility of the volume to a broader cross section of the scientific community, the book's approach is, in general, more descriptive than mathematical. In some areas, however, mathematical concepts are dealt with in depth, increasing the appeal to those seeking a more rigorous treatment of the subject.

Biomedical Applications of Microprobe Analysis

Biomedical Applications of Microprobe Analysis PDF Author: Peter Ingram
Publisher: Academic Press
ISBN: 0080524567
Category : Science
Languages : en
Pages : 573

Get Book Here

Book Description
Biomedical Applications of Microprobe Analysis is a combination reference/laboratory manual for the use of microprobe analysis in both clinical diagnostic and research settings. Also called microchemical microscopy, microprobe analysis uses high-energy bombardment of cells and tissue, in combination with high resolution EM or confocal microscopy to provide a profile of the ion, metal, and mineral concentrations present in a sample. This allows insight into the physiology and pathophysiology of a wide variety of cells and tissues.This book describes methods for obtaining detailed information about the identity and composition of particles too small to be seen with the naked eye and describes how this information can be useful in diagnostic and biomedical research. - Up-to-date review of electron microprobe analysis - Detailed descriptions of sample preparation techniques - Recent technologies including confocal microscopy, infrared microspectroscopy, and laser raman spectroscopy - Over 100 illustrations with numerous specific applications - Contributions by world-renowned experts in the field - Brief summary of highlights precedes each chapter

Analysis of Organic and Biological Surfaces

Analysis of Organic and Biological Surfaces PDF Author: Patrick Echlin
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 666

Get Book Here

Book Description


The Zebrafish: Cellular and Developmental Biology

The Zebrafish: Cellular and Developmental Biology PDF Author:
Publisher: Elsevier
ISBN: 0080473458
Category : Science
Languages : en
Pages : 655

Get Book Here

Book Description
This volume of Methods in Cell Biology, the first of two parts on the subject of zebrafish, provides a comprehensive compendia of laboratory protocols and reviews covering all the new methods developed since 1999. This first volume provides state-of-the-art descriptions of novel cellular imaging technologies and methods for culture of zebrafish stem cells, summarizes protocols for analyzingthe development of major organ systems including the central nervous system (CNS), and introduces the use of the zebrafish as a model system for human diseases. - Details state-of-the art zebrafish protocols, delineating critical steps in the procedures as well as potential pitfalls - Illustrates many techiques in full-color - Summarizes the Zebrafish Genome Project

Advanced Techniques in Biological Electron Microscopy III

Advanced Techniques in Biological Electron Microscopy III PDF Author: J.K. Koehler
Publisher: Springer Science & Business Media
ISBN: 3642711359
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
This volume is a continuation of two prior books on advanced electron microscope techniques. The purpose of this series has been to provide in depth analyses of methods which are considered to be at the leading edge of electron microscopic research procedures with applications in the biological sciences. The mission of the present volume remains that of a source book for the research practitioner or advanced student, especially one already well versed in basic electron optical methods. It is not meant to provide in troductory material, nor can this modest volume hope to cover the entire spectrum of advanced technology now available in electron microscopy. In the past decade, computers have found their way into many research laboratories thanks to the enormous increase in computing power and stor age available at a modest cost. The ultrastructural area has also benefited from this expansion in a number of ways which will be illustrated in this volume. Half of the contributions discuss technologies that either directly or indirectly make extensive use of computer methods.

Low-Temperature Microscopy and Analysis

Low-Temperature Microscopy and Analysis PDF Author: Patrick Echlin
Publisher: Springer Science & Business Media
ISBN: 1489923020
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
The frozen-hydrated specimen is the principal element that unifies the subject of low temperature microscopy, and frozen-hydrated specimens are what this book is all about. Freezing the sample as quickly as possible and then further preparing the specimen for microscopy or microanalysis, whether still embedded in ice or not: there seem to be as many variations on this theme as there are creative scientists with problems of structure and composition to investigate. Yet all share a body of com mon fact and theory upon which their work must be based. Low-Temperature Micros copy and Analysis provides, for the first time, a comprehensive treatment of all the elements to which one needs access. What is the appeal behind the use of frozen-hydrated specimens for biological electron microscopy, and why is it so important that such a book should now have been written? If one cannot observe dynamic events as they are in progress, rapid specimen freezing at least offers the possibility to trap structures, organelles, macro molecules, or ions and other solutes in a form that is identical to what the native structure was like at the moment of trapping. The pursuit of this ideal becomes all the more necessary in electron microscopy because of the enormous increase in resolution that is available with electron-optical instruments, compared to light optical microscopes.