Method of Moments for Gas-solid Flows

Method of Moments for Gas-solid Flows PDF Author: Matteo Strumendo
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description

Method of Moments for Gas-solid Flows

Method of Moments for Gas-solid Flows PDF Author: Matteo Strumendo
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description


Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice PDF Author: Pannala, Sreekanth
Publisher: IGI Global
ISBN: 1615206523
Category : Computers
Languages : en
Pages : 500

Get Book Here

Book Description
"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.

Computational Fluid Dynamics and the Theory of Fluidization

Computational Fluid Dynamics and the Theory of Fluidization PDF Author: Huilin Lu
Publisher: Springer Nature
ISBN: 9811615586
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
This book is for engineers and students to solve issues concerning the fluidized bed systems. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behavior which empirical data is limited or unavailable. The second objective is to provide a treatment of computational fluidization dynamics that is readily accessible to the non-specialist. The approach adopted in this book, starting with the formulation of predictive expressions for the basic conservation equations for mass and momentum using kinetic theory of granular flow. The analyses presented in this book represent a body of simulations and experiments research that has appeared in numerous publications over the last 20 years. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows PDF Author: Shankar Subramaniam
Publisher: Academic Press
ISBN: 0323901344
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. Provides a comprehensive introduction to the phenomena of particle laden turbulent flow Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation Describes a wide range of innovative applications of these models

Computational Techniques for Multiphase Flows

Computational Techniques for Multiphase Flows PDF Author: Guan Heng Yeoh
Publisher: Elsevier
ISBN: 0080914896
Category : Computers
Languages : en
Pages : 658

Get Book Here

Book Description
Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. Computational Techniques for Multiphase Flows enables scientists and engineers to the undertand the basis and application of CFD in muliphase flow, explains how to use the technique, when to use it and how to interpret the results and apply them to improving aplications in process enginering and other multiphase application areas including the pumping, automotive and energy sectors. Understandable guide to a complex subject Important in many industries Ideal for potential users of CFD

Principles of Gas-Solid Flows

Principles of Gas-Solid Flows PDF Author: Liang-Shih Fan
Publisher: Cambridge University Press
ISBN: 0521581486
Category : Science
Languages : en
Pages : 579

Get Book Here

Book Description
Discusses fundamental principles of gas-solid flows and their applications, and includes numerous examples and homework problems.

Computational Methods in Multiphase Flow V

Computational Methods in Multiphase Flow V PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845641884
Category : Science
Languages : en
Pages : 545

Get Book Here

Book Description
Together with turbulence, multiphase flow remains one of the most challenging areas of computational mechanics and experimental methods and numerous problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problems, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include modelling and tracking interfaces, dealing with multiple length scales, modelling nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others. Experimental techniques, although expensive and difficult to perform, are essential to validate models. This book contains papers presented at the Fifth International Conference on Computational Methods in Multiphase Flow, which are grouped into the following topics: Multiphase Flow Simulation; Interaction of Gas, Liquids and Solids; Turbulent Flow; Environmental Multiphase Flow; Bubble and Drop Dynamics; Flow in Porous Media; Heat Transfer; Image Processing; Interfacial Behaviour.

Bridging Scales in Modelling and Simulation of Non-Reacting and Reacting Flows. Part I

Bridging Scales in Modelling and Simulation of Non-Reacting and Reacting Flows. Part I PDF Author:
Publisher: Academic Press
ISBN: 0128150971
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
Bridging Scales in Modelling and Simulating Reacting Flows, Part I , Volume 52 presents key methods to bridge scales in the simulation of reacting single phase flows. New sections in the updated release include topics such as quadrature-based moment methods for multiphase chemically reacting flows, the collaboration of experiments and simulations for the development of predictive models, a simulation of turbulent coalescence and breakage of bubbles and droplets in the presence of surfactants, a section on salts and contaminants, and information on the numerical simulation of reactive flows. Contains reviews by leading authorities in their respective areas Presents up-to-date reviews of the latest techniques in the modeling of catalytic processes Includes a broad mix of US and European authors, as well as academic, industrial and research institute perspectives Provides discussions on the connections between computational and experimental methods

Moment Method in Rarefied Gas Dynamics

Moment Method in Rarefied Gas Dynamics PDF Author: Alireza Mohammadzadeh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
It is well established that rarefied flows cannot be properly described by traditional hydrodynamics, namely the Navier-Stokes equations for gas flows, and the Fourier's law for heat transfer. Considering the significant advancement in miniaturization of electronic devices, where dimensions become comparable with the mean free path of the flow, it is well established that rarefied flows cannot be properly described by traditional hydrodynamics, namely the Navier-Stokes equations for gas flows, and the Fourier's law for heat transfer. Considering the significant advancement in miniaturization of electronic devices, where dimensions become comparable with the mean free path of the flow, the study of rarefied flows is extremely important. This dissertation includes two main parts. First, we look into the heat transport in solids when the mean free path for phonons are comparable with the length scale of the flow. A set of macroscopic moment equations for heat transport in solids are derived to extend the validity of Fourier's law beyond the hydrodynamics regime. These equations are derived such that they remain valid at room temperature, where the MEMS devices usually work. The system of moment equations for heat transport is then employed to model the thermal grating experiment, recently conducted on a silicon wafer. It turns out that at room temperature, where the experiment was conducted, phonons with high meanfree path significantly contribute to the heat transport. These low frequency phonons are not considered in the classical theory, which leads to failure of the Fourier's law in describing the thermal grating experiment. In contrast, the system of moment equations successfully predict the deviation from the classical theory in the experiment, and suggest the importance of considering both low and high frequency phonons at room temperature to capture the experimental results. In the second part of this study, we look into the gas-surface interactions for conventional gas dynamics when the gas flow is rarefied. An extension to the well-known Maxwell boundary conditions for gas-surface interactions are obtained by considering velocity dependency in the reflection kernel from the surface. This extension improves the Maxwell boundary conditions by providing an extra free parameter that can be fitted to the experimental datafor thermal transpiration effect in non-equilibrium flows. The velocity dependent Maxwell boundary conditions are derived for the Direct Simulation Monte Carlo (DSMC) method and theregularized 13-moment (R13) equations for conventional gas dynamics. Then, athermal cavity is considered to test and study the effect of these boundary conditions on the flow formation in the slip and early transition regime. It turns out that using velocity dependent boundary conditions allows us to change the size and direction of the thermal transpiration force, which leads to marked changes in the balance of transpiration forces and thermal stresses in the flow.

Multiphase reacting flows: modelling and simulation

Multiphase reacting flows: modelling and simulation PDF Author: Daniele L. Marchisio
Publisher: Springer Science & Business Media
ISBN: 3211724648
Category : Technology & Engineering
Languages : en
Pages : 269

Get Book Here

Book Description
This book describes the most widely applicable modeling approaches. Chapters are organized in six groups covering from fundamentals to relevant applications. The book covers particle-based methods and also discusses Eulerian-Eulerian and Eulerian-Lagrangian techniques based on finite-volume schemes. Moreover, the possibility of modeling the poly-dispersity of the secondary phases in Eulerian-Eulerian schemes by solving the population balance equation is discussed.