Author: Willie J. Padilla
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Metamaterial Electromagnetic Wave Absorbers
Author: Willie J. Padilla
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Metamaterial Electromagnetic Wave Absorbers
Author: Willie J. Padilla
Publisher: Springer Nature
ISBN: 3031037650
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Publisher: Springer Nature
ISBN: 3031037650
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Electromagnetic Wave Absorbers
Author: Youji Kotsuka
Publisher: John Wiley & Sons
ISBN: 1119564123
Category : Science
Languages : en
Pages : 336
Book Description
Addresses the importance of EM wave absorbers and details pertinent theory, design, and applications Demands for various EM-wave absorbers are rapidly increasing along with recent trends toward complicated electromagnetic environments and development of higher-frequency communication equipment, including AI technology. This book provides a broad perspective on electromagnetic wave absorbers, as well as discussion of specific types of absorbers, their advantages and disadvantages, their applications, and performance verification. Electromagnetic Wave Absorbers: Detailed Theories and Applications presents the theory behind wave absorbers and their practical usage in design of EM-wave absorber necessary particularly for EMC environments, and similar applications. The first half of the book contains the foundations of electromagnetic wave engineering, specifically the transmission line theories necessary for EM-wave absorber analysis, the basic knowledge of reflection, transmission, and absorption of electromagnetic waves, derivation of Maxwell's equations and computer analysis. The second half describes special mediums, absorber application examples, simplified methods of absorber design, autonomously controllable EM-wave absorber, and more. This valuable text: Provides detailed explanations of basic theory and applied theory for understanding EM-wave absorbers Discusses the material constant measurement methods of EM-wave absorption characteristics that are necessary for designing EM-wave absorbers Includes examples of novel EM-wave absorber configurations Electromagnetic Wave Absorbers: Detailed Theories and Applications is an ideal read for researchers and students concerned with electromagnetic wave engineering. It will also appeal to computer software engineers and electromagnetic field theory researchers.
Publisher: John Wiley & Sons
ISBN: 1119564123
Category : Science
Languages : en
Pages : 336
Book Description
Addresses the importance of EM wave absorbers and details pertinent theory, design, and applications Demands for various EM-wave absorbers are rapidly increasing along with recent trends toward complicated electromagnetic environments and development of higher-frequency communication equipment, including AI technology. This book provides a broad perspective on electromagnetic wave absorbers, as well as discussion of specific types of absorbers, their advantages and disadvantages, their applications, and performance verification. Electromagnetic Wave Absorbers: Detailed Theories and Applications presents the theory behind wave absorbers and their practical usage in design of EM-wave absorber necessary particularly for EMC environments, and similar applications. The first half of the book contains the foundations of electromagnetic wave engineering, specifically the transmission line theories necessary for EM-wave absorber analysis, the basic knowledge of reflection, transmission, and absorption of electromagnetic waves, derivation of Maxwell's equations and computer analysis. The second half describes special mediums, absorber application examples, simplified methods of absorber design, autonomously controllable EM-wave absorber, and more. This valuable text: Provides detailed explanations of basic theory and applied theory for understanding EM-wave absorbers Discusses the material constant measurement methods of EM-wave absorption characteristics that are necessary for designing EM-wave absorbers Includes examples of novel EM-wave absorber configurations Electromagnetic Wave Absorbers: Detailed Theories and Applications is an ideal read for researchers and students concerned with electromagnetic wave engineering. It will also appeal to computer software engineers and electromagnetic field theory researchers.
Metamaterials and Metasurfaces
Author: Josep Canet-Ferrer
Publisher: BoD – Books on Demand
ISBN: 1789848423
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field. In the second part, the discussion is extended to the different spectral ranges focusing on the strategies for enabling the reconfigurability of metadevices. Given the increasing interest in THz applications, these can be found in the third part.
Publisher: BoD – Books on Demand
ISBN: 1789848423
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field. In the second part, the discussion is extended to the different spectral ranges focusing on the strategies for enabling the reconfigurability of metadevices. Given the increasing interest in THz applications, these can be found in the third part.
Transformation Electromagnetics and Metamaterials
Author: Douglas H. Werner
Publisher: Springer Science & Business Media
ISBN: 1447149963
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Publisher: Springer Science & Business Media
ISBN: 1447149963
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Fundamentals and Principles of Electromagnetic Wave Absorbers
Author: Sung-Soo Kim
Publisher: Springer Nature
ISBN: 9819764777
Category :
Languages : en
Pages : 266
Book Description
Publisher: Springer Nature
ISBN: 9819764777
Category :
Languages : en
Pages : 266
Book Description
Electromagnetic Vortices
Author: Zhi Hao Jiang
Publisher: John Wiley & Sons
ISBN: 1119662826
Category : Science
Languages : en
Pages : 498
Book Description
Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.
Publisher: John Wiley & Sons
ISBN: 1119662826
Category : Science
Languages : en
Pages : 498
Book Description
Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.
Electromagnetic Nanomaterials
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1394166222
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
ELECTROMAGNETIC METAMATERIALS The book presents an overview of metamaterials current state of development in several domains of application such as electromagnetics, electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics. Metamaterials have become a hot topic in the scientific community in recent years due to their remarkable electromagnetic properties. Metamaterials have the ability to alter electromagnetic and acoustic waves in ways that bulk materials cannot. Electromagnetic Metamaterials: Properties and Applications discusses a wide range of components to make metamaterial-engineered devices. It gives an overview of metamaterials’ current stage of development in a variety of fields such as remote aerospace applications, medical appliances, sensor detectors and monitoring devices of infrastructure, crowd handling, smart solar panels, radomes, high-gain antennas lens, high-frequency communication on the battlefield, ultrasonic detectors, and structures to shield from earthquakes. Audience Researchers and engineers in electromagnetic and electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics.
Publisher: John Wiley & Sons
ISBN: 1394166222
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
ELECTROMAGNETIC METAMATERIALS The book presents an overview of metamaterials current state of development in several domains of application such as electromagnetics, electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics. Metamaterials have become a hot topic in the scientific community in recent years due to their remarkable electromagnetic properties. Metamaterials have the ability to alter electromagnetic and acoustic waves in ways that bulk materials cannot. Electromagnetic Metamaterials: Properties and Applications discusses a wide range of components to make metamaterial-engineered devices. It gives an overview of metamaterials’ current stage of development in a variety of fields such as remote aerospace applications, medical appliances, sensor detectors and monitoring devices of infrastructure, crowd handling, smart solar panels, radomes, high-gain antennas lens, high-frequency communication on the battlefield, ultrasonic detectors, and structures to shield from earthquakes. Audience Researchers and engineers in electromagnetic and electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics.
Metamaterials
Author: Pankaj K. Choudhury
Publisher: CRC Press
ISBN: 1000469298
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book
Publisher: CRC Press
ISBN: 1000469298
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
Metamaterials have been in research limelight for the last few years owing to the exotic electromagnetic features these exhibit. With certain combinational forms of the design, these can be of prudent applications in developing antennas, filters, absorbers, sensors, energy harvesters, and many others. As such, the role of engineered mediums remains greatly important as the frequency region of operation determines the structure (of the medium(s)) to be developed – the fact that is exploited in the on-demand kind of tailoring the electromagnetic response of metamaterials. The relevant R&D investigators show keen interest in the fabrication of varieties of novel miniaturized devices that can be of great potentials in many micro- as well as nanotechnology-oriented applications. With this view point in mind, the Book provides the glimpse of phenomenal growth of research in this direction through covering the topics pivoted to fundamental descriptions, and theoretical and experimental results reported by pioneering scientists. It is expected that the book will be of benefit to novice researchers (such as graduate students) and expert scientists in universities and research laboratories. Some of the contents in the book are centered on industrial applications of metamaterials, thereby making the volume useful to the R&D scientists in certain industries. In summary, the book
New Horizon of Plasmonics and Metamaterials
Author: Masafumi Kimata
Publisher: MDPI
ISBN: 3039360140
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and therefore, significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics, in order to explore the new horizons emerging for such research.
Publisher: MDPI
ISBN: 3039360140
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and therefore, significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics, in order to explore the new horizons emerging for such research.