Meromorphic Dynamics: Volume 2

Meromorphic Dynamics: Volume 2 PDF Author: Janina Kotus
Publisher: Cambridge University Press
ISBN: 1009215965
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.

Meromorphic Dynamics: Volume 1

Meromorphic Dynamics: Volume 1 PDF Author: Janina Kotus
Publisher: Cambridge University Press
ISBN: 1009215906
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.

Geometry and Physics: Volume 2

Geometry and Physics: Volume 2 PDF Author: Jørgen Ellegaard Andersen
Publisher: Oxford University Press
ISBN: 019252237X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.

Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry

Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry PDF Author: Volker Mayer
Publisher: Springer Science & Business Media
ISBN: 3642236499
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen’s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets.

Holomorphic Dynamical Systems

Holomorphic Dynamical Systems PDF Author: Nessim Sibony
Publisher: Springer Science & Business Media
ISBN: 3642131700
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.

Complex Dynamics

Complex Dynamics PDF Author: Lennart Carleson
Publisher: Springer Science & Business Media
ISBN: 1461243645
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
A discussion of the properties of conformal mappings in the complex plane, closely related to the study of fractals and chaos. Indeed, the book ends in a detailed study of the famous Mandelbrot set, which describes very general properties of such mappings. Focusing on the analytic side of this contemporary subject, the text was developed from a course taught over several semesters and aims to help students and instructors to familiarize themselves with complex dynamics. Topics covered include: conformal and quasi-conformal mappings, fixed points and conjugations, basic rational iteration, classification of periodic components, critical points and expanding maps, some applications of conformal mappings, the local geometry of the Fatou set, and quadratic polynomials and the Mandelbrot set.

Dynamical Systems and Random Processes

Dynamical Systems and Random Processes PDF Author: Jane Hawkins
Publisher: American Mathematical Soc.
ISBN: 1470448319
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This volume contains the proceedings of the 16th Carolina Dynamics Symposium, held from April 13–15, 2018, at Agnes Scott College, Decatur, Georgia. The papers cover various topics in dynamics and randomness, including complex dynamics, ergodic theory, topological dynamics, celestial mechanics, symbolic dynamics, computational topology, random processes, and regular languages. The intent is to provide a glimpse of the richness of the field and of the common threads that tie the different specialties together.

Collected Works of William P. Thurston with Commentary

Collected Works of William P. Thurston with Commentary PDF Author: Benson Farb
Publisher: American Mathematical Society
ISBN: 1470474735
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume II contains William Thurston's papers on the geometry and topology of 3-manifolds, on complexity, constructions and computers, and on geometric group theory.

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances PDF Author: Semyon Dyatlov
Publisher: American Mathematical Soc.
ISBN: 147044366X
Category : Mathematics
Languages : en
Pages : 649

Get Book Here

Book Description
Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.