Mechanisms of Post-Transcriptional Regulation in S. Cerevisiae

Mechanisms of Post-Transcriptional Regulation in S. Cerevisiae PDF Author: Vince Harjono
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Get Book Here

Book Description
Post-transcriptional regulation represents a powerful and versatile mechanism to fine-tune gene expression to meet cellular and environmental demands. One important aspect of post-transcriptional regulation involves regulation of protein translation, the process of building proteins from a messenger RNA. In this dissertation, I use biochemical and molecular biology techniques to study how translation is mechanistically regulated by both mRNA and protein factors. In chapter 2, I discuss the development of a quantitative method in eukaryotes to measure ribosomal stalls of cis-mRNA factors on protein elongation. We find that different distributions of nonoptimal codons trigger different surveillance and rescue pathways despite similar levels of elongation delay. In chapter 3, I explore the relationship between translatability and mRNA localization during glucose starvation and investigate potential factors that influence this relationship. We find that a complex made from Rvb1 and Rvb2 is involved in promoter-directed cytoplasmic fate in a subset of stress response genes in glucose starvation. Furthermore, we use carefully designed reporters to interrogate how translatability determines cytoplasmic localization and find that active translation is linked to exclusion from stress-induced cytoplasmic granules. Finally in chapter 4, I discuss improvements on the method we have developed, possible future directions for the work described in this dissertation, and my concluding remarks.

Mechanisms of Post-Transcriptional Regulation in S. Cerevisiae

Mechanisms of Post-Transcriptional Regulation in S. Cerevisiae PDF Author: Vince Harjono
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Get Book Here

Book Description
Post-transcriptional regulation represents a powerful and versatile mechanism to fine-tune gene expression to meet cellular and environmental demands. One important aspect of post-transcriptional regulation involves regulation of protein translation, the process of building proteins from a messenger RNA. In this dissertation, I use biochemical and molecular biology techniques to study how translation is mechanistically regulated by both mRNA and protein factors. In chapter 2, I discuss the development of a quantitative method in eukaryotes to measure ribosomal stalls of cis-mRNA factors on protein elongation. We find that different distributions of nonoptimal codons trigger different surveillance and rescue pathways despite similar levels of elongation delay. In chapter 3, I explore the relationship between translatability and mRNA localization during glucose starvation and investigate potential factors that influence this relationship. We find that a complex made from Rvb1 and Rvb2 is involved in promoter-directed cytoplasmic fate in a subset of stress response genes in glucose starvation. Furthermore, we use carefully designed reporters to interrogate how translatability determines cytoplasmic localization and find that active translation is linked to exclusion from stress-induced cytoplasmic granules. Finally in chapter 4, I discuss improvements on the method we have developed, possible future directions for the work described in this dissertation, and my concluding remarks.

Mechanisms of Transcriptional Control in Phosphate-responsive Signaling Pathway of Saccharomyces Cerevisiae

Mechanisms of Transcriptional Control in Phosphate-responsive Signaling Pathway of Saccharomyces Cerevisiae PDF Author: Xu Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Regulation of gene expression is essential for many biological processes. Binding of transcription factors to DNA is a key regulatory step in the control of gene expression. It is commonly observed that DNA sequences with high affinity for transcription factors occur more frequently in the genome than the instances of genes bound or regulated by these factors. However, the mechanism by which transcription factors selectively identify and regulate these genes was unclear. I utilized the transcriptional control of the phosphate-responsive signaling pathway (PHO) in Saccharomyces cerevisiae as a model system to address this problem.

Proteomic and Transcriptomic Analyses Reveal Novel Aspects of Post-transcriptional Regulation in Saccharomyces Cerevisiae

Proteomic and Transcriptomic Analyses Reveal Novel Aspects of Post-transcriptional Regulation in Saccharomyces Cerevisiae PDF Author: Gregory A. Cary
Publisher:
ISBN:
Category :
Languages : en
Pages : 129

Get Book Here

Book Description
Although gene expression begins with transcription, there are a variety of mechanisms that cells use to control and tune expression post-transcriptionally. Many post-transcriptional regulatory functions including translational regulation, transcript surveillance, intracellular RNA localization, and RNA decay occur in organelles known as RNA granules. RNA granules, such as processing (P)-bodies, are cytoplasmic accumulations of translationally repressed mRNA and associated proteins that are ubiquitous among eukaryotes. Much of what is known about RNA granule biology has been observed through genetic and cytological experimentation and very few biochemical enrichments of these structures have been reported. In this work I present an affinity enrichment strategy for Dhh1, a conserved core component of P-bodies, from the budding yeast Saccharomyces cerevisiae. We identify proteins co-enriching with Dhh1 using tandem mass spectrometry and show that many known RNA granule proteins are enriched by this approach. We go on to compare the association of proteins with the complex across two environmental conditions to examine the effect of stress induction on RNA granule assemblies. We find that metabolic enzymes and molecular chaperones are typically more abundant in the stress-induced P-body complex and demonstrate that one chaperone, YDJ1, is involved in the stress-induced aggregation of several P-body proteins into cytoplasmic foci. We also identify RNA co-enriching with Dhh1 and detect several classes of catalytic RNA as well as a strong enrichment for the mRNA encoding the P-body protein PAT1. Finally, I present and discuss the characterization of a yeast strain that exhibits sensitivity to the drug puromycin. The puromycin-sensitive strain incorporates the drug into nascent proteins in vivo and I discuss how this is a unique and useful approach for the detection of protein biosynthesis. The techniques developed and employed in this dissertation provide novel perspectives on post-transcriptional regulatory processes and enable further investigations into how these regulatory programs are executed within the cell.

Post-transcriptional Mechanisms in Endocrine Regulation

Post-transcriptional Mechanisms in Endocrine Regulation PDF Author: K.M.J. Menon, PhD
Publisher: Springer
ISBN: 3319251244
Category : Medical
Languages : en
Pages : 347

Get Book Here

Book Description
This book examines how post-transcriptional mechanisms control endocrine function. This includes newly identified regulatory mechanisms involved in hormone biosynthesis, control of hormone receptors and the outputs of hormone mediated signal transduction. Chapters address endocrine hormones including protein peptide/peptide, steroid, and non-steroidal hormones. The impacts of these mechanisms on disease and health are covered, providing a novel update to the scientific literature. Post-transcriptional regulatory mechanisms play an essential role in controlling dynamic gene expression. The outcome of this regulation includes control of the amount, timing, and location of protein expression. Regulation is mediated by cis-acting RNA sequences and structures and transacting RNA binding proteins and non-coding RNAs, including microRNAs. Recent advances in characterization of these regulatory factors have revealed enormous regulatory potential.

Mechanisms of Transcriptional Control in Phosphate-responsive Signaling Pathway of Saccharomyces Cerevisiae

Mechanisms of Transcriptional Control in Phosphate-responsive Signaling Pathway of Saccharomyces Cerevisiae PDF Author: Xu Zhou (Biochemist)
Publisher:
ISBN:
Category : Gene expression
Languages : en
Pages : 192

Get Book Here

Book Description


Post-transcriptional Regulation of Gene Expression by the [PSI] Prion of Saccharomyces Cerevisiae

Post-transcriptional Regulation of Gene Expression by the [PSI] Prion of Saccharomyces Cerevisiae PDF Author: Jonathan Paul Richardson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Molecular Mechanisms in Yeast Carbon Metabolism

Molecular Mechanisms in Yeast Carbon Metabolism PDF Author: Jure Piškur
Publisher: Springer
ISBN: 3642550134
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
Yeast is one of the most studied laboratory organisms and represents one of the most central models to understand how any eukaryote cell works. On the other hand, yeast fermentations have for millennia provided us with a variety of biotech products, like wine, beer, vitamins, and recently also with pharmaceutically active heterologous products and biofuels. A central biochemical activity in the yeast cell is the metabolism of carbon compounds, providing energy for the whole cell, and precursors for any of the final fermentation products. A complex set of genes and regulatory pathways controls the metabolism of carbon compounds, from nutrient sensing, signal transduction, transcription regulation and post-transcriptional events. Recent advances in comparative genomics and development of post-genomic tools have provided further insights into the network of genes and enzymes, and molecular mechanisms which are responsible for a balanced metabolism of carbon compounds in the yeast cell, and which could be manipulated in the laboratory to increase the yield and quality of yeast biotech products. This book provides a dozen of most comprehensive reviews on the recent developments and achievements in the field of yeast carbon metabolism, from academic studies on gene expression to biotechnology relevant topics.

No Nonsense

No Nonsense PDF Author: Krista D. Patefield
Publisher:
ISBN: 9781339638867
Category :
Languages : en
Pages : 249

Get Book Here

Book Description
Gene regulation in eukaryotes is tightly controlled at multiple levels to ensure proper expression and cellular homeostasis. Misregulation of gene expression is a common source of genetic disease. One mechanism by which cells are able to control gene expression is through the synthesis and degradation of the mRNA molecules encoding the genes. The transcription and degradation of mRNA molecules controls the pool mRNAs that are available to the translational machinery. One of the well-studied mRNA decay pathways is the Nonsense-Mediated mRNA Decay pathway (NMD). Originally, NMD was discovered as a posttranscriptional mRNA surveillance mechanism responsible for the deadenylation-independent decapping and rapid 5'→3' degradation of mRNAs that harbor premature termination codons (PTCs). Approximately one-third of all inherited genetic disease and cancers are related to NMD. It is now known that NMD plays a much larger role in the stability and expression of wild-type mRNAs as well. Wild-type mRNAs with NMD-targeting signals, which include 1) a translated uORF, 2) a long 3' UTR, 3) leaky scanning leading to out-of-frame initiation of translation, 3) programmed ribosome frameshift sites, and 5) regulated alternative splicing variants, are rapidly destabilized by NMD. It has also been observed that some wild-type mRNAs contain NMD targeting signals but are not degraded by NMD due to protecting mechanism. Here we show that the SSY5 mRNA in Saccharomyces cerevisiae is a wild-type mRNA with multiple NMD targeting signals but is not degraded by NMD. None of the current models for NMD protection explain the SSY5 mRNA stability so the mechanism of protection is likely to be novel. Additionally, we show the SSY5 mRNA is primarily degraded 5'→3'. We also explore two additional mRNAs, YAP1 and GCN4, in S. cerevisiae that also contain at least one NMD-targeting signal but are not degraded by NMD. Elucidating the mechanism of protection from NMD of these three mRNAs will provide valuable insight to the underlying molecular mechanisms of NMD, which despite thorough investigation remain unclear. Understanding the molecular intricacies of the NMD pathway will allow for the efficient development of NMD-related disease therapies with minimal risks and side-effects.

Advances in Animal Genomics

Advances in Animal Genomics PDF Author: Sukanta Mondal
Publisher: Academic Press
ISBN: 0128206128
Category : Science
Languages : en
Pages : 340

Get Book Here

Book Description
Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion

Characterization of Novel RNA-protein Regulatory Interactions in Saccharomyces Cerevisiae

Characterization of Novel RNA-protein Regulatory Interactions in Saccharomyces Cerevisiae PDF Author: Nikoleta Georgieva Tsvetanova
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The dynamic processes of a living cell depend on the coordinated temporal and spatial regulation of the many steps of gene expression. Transcription regulation is one control point of gene expression, and a gene can also be regulated post-transcriptionally, by RNA-binding proteins (RBPs). The biological significance of post-transcriptional regulation is especially evident in cases, where RBP binding controls the temporal precision of suppression and activation of important cellular stress responses. We developed a proteome-wide experimental approach for in vitro identification of novel RBPs and RNA-protein interactions in Saccharomyces cerevisiae. We found 12 novel RNA-binding proteins, the majority of which, surprisingly, are currently annotated as enzymes with roles in metabolic processes. We next used this proteomic approach to screen for proteins specifically interacting with the HAC1 RNA, which mediates activation of the yeast unfolded protein response (UPR). We found that HAC1 associated reproducibly with four small yeast GTPases, three of which are of the Ypt family of ras-GTPases. We further characterized one of them, the yeast Rab1 homolog Ypt1, and showed that Ypt1 interacted with unspliced HAC1 RNA only in the absence of ER stress. Selective Ypt1 depletion increased HAC1 RNA stability and expression, and also affected timely recovery from UPR. By developing and applying a novel proteomic approach for studying RNA-protein interactions, we established Ypt1 as an important regulator of HAC1 expression and UPR signaling. This unexpected protein-RNA interaction provides a biochemical mechanism for coordinating the key cellular processes of vesicle trafficking and ER homeostasis.