Author: Jean Lemaitre
Publisher: Cambridge University Press
ISBN: 9780521477581
Category : Science
Languages : en
Pages : 588
Book Description
Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.
Mechanics of Solid Materials
Author: Jean Lemaitre
Publisher: Cambridge University Press
ISBN: 9780521477581
Category : Science
Languages : en
Pages : 588
Book Description
Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 9780521477581
Category : Science
Languages : en
Pages : 588
Book Description
Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.
Mechanics of Solids and Materials
Author: Robert Asaro
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Mechanics of Solids
Author: Carl Ross
Publisher: Routledge
ISBN: 1317189388
Category : Technology & Engineering
Languages : en
Pages : 1510
Book Description
An introduction to the fundamental concepts of solid materials and their properties The primary recommended text of the Council of Engineering Institutions for university undergraduates studying the mechanics of solids New chapters covering revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites and the finite element method Free electronic resources and web downloads support the material contained within this book Mechanics of Solids provides an introduction to the behaviour of solid materials and their properties, focusing upon the fundamental concepts and principles of statics and stress analysis. Essential reading for first year undergraduates, the mathematics in this book has been kept as straightforward as possible and worked examples are used to reinforce key concepts. Practical stress and strain scenarios are also covered including stress and torsion, elastic failure, buckling, bending, as well as examples of solids such as thin-walled structures, beams, struts and composites. This new edition includes new chapters on revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites, the finite element method, and Ross’s computer programs for smartphones, tablets and computers.
Publisher: Routledge
ISBN: 1317189388
Category : Technology & Engineering
Languages : en
Pages : 1510
Book Description
An introduction to the fundamental concepts of solid materials and their properties The primary recommended text of the Council of Engineering Institutions for university undergraduates studying the mechanics of solids New chapters covering revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites and the finite element method Free electronic resources and web downloads support the material contained within this book Mechanics of Solids provides an introduction to the behaviour of solid materials and their properties, focusing upon the fundamental concepts and principles of statics and stress analysis. Essential reading for first year undergraduates, the mathematics in this book has been kept as straightforward as possible and worked examples are used to reinforce key concepts. Practical stress and strain scenarios are also covered including stress and torsion, elastic failure, buckling, bending, as well as examples of solids such as thin-walled structures, beams, struts and composites. This new edition includes new chapters on revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites, the finite element method, and Ross’s computer programs for smartphones, tablets and computers.
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 822
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 822
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Experimental Mechanics of Solids
Author: Cesar A. Sciammarella
Publisher: John Wiley & Sons
ISBN: 1119970091
Category : Science
Languages : en
Pages : 769
Book Description
Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.
Publisher: John Wiley & Sons
ISBN: 1119970091
Category : Science
Languages : en
Pages : 769
Book Description
Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.
Mechanics of Solid Polymers
Author: Jorgen S Bergstrom
Publisher: William Andrew
ISBN: 0323322964
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work
Publisher: William Andrew
ISBN: 0323322964
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work
Non-Linear Mechanics of Materials
Author: Jacques Besson
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.
Intermediate Mechanics of Materials
Author: J. R. Barber
Publisher: Springer Science & Business Media
ISBN: 9400702957
Category : Science
Languages : en
Pages : 629
Book Description
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http://extras.springer.com/ .
Publisher: Springer Science & Business Media
ISBN: 9400702957
Category : Science
Languages : en
Pages : 629
Book Description
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http://extras.springer.com/ .
Mechanics of Solids and Structures, Second Edition
Author: Roger T. Fenner
Publisher: CRC Press
ISBN: 1439858144
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.
Publisher: CRC Press
ISBN: 1439858144
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.
Fundamentals of SOLID MECHANICS : A Treatise on Strength of Materials
Author: M. L. Gambhir
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120338707
Category : Technology & Engineering
Languages : en
Pages : 934
Book Description
It covers all the basic topics of mechanics of deformable bodies generally taught in these courses. The text presents the topics in a clear, simple, practical, logical and cogent fashion that provides the students with insights into theory as well as applications to practical problems. It uses an abundance of worked examples to impart a high level of comprehension of concepts and helps master the process of calculations, manipulations and that of making appropriate inferences. Well-labelled diagrams have been used throughout the text for a sound comprehension of the fundamentals of the subject. Most of the examples and chapter-end problems have been formulated in parametric form making them independent of units and suitable for practical applications. An extensive set of problems along with hints and answers is provided at the end of each chapter for practice. Since the book aims at covering the topics generally taught in engineering curriculum of several disciplines, an interdisciplinary approach has been followed. Some advanced topics such as thick pressure vessels, skew bending, curved members, beam-columns, etc. have also been included for the benefit of postgraduate students.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120338707
Category : Technology & Engineering
Languages : en
Pages : 934
Book Description
It covers all the basic topics of mechanics of deformable bodies generally taught in these courses. The text presents the topics in a clear, simple, practical, logical and cogent fashion that provides the students with insights into theory as well as applications to practical problems. It uses an abundance of worked examples to impart a high level of comprehension of concepts and helps master the process of calculations, manipulations and that of making appropriate inferences. Well-labelled diagrams have been used throughout the text for a sound comprehension of the fundamentals of the subject. Most of the examples and chapter-end problems have been formulated in parametric form making them independent of units and suitable for practical applications. An extensive set of problems along with hints and answers is provided at the end of each chapter for practice. Since the book aims at covering the topics generally taught in engineering curriculum of several disciplines, an interdisciplinary approach has been followed. Some advanced topics such as thick pressure vessels, skew bending, curved members, beam-columns, etc. have also been included for the benefit of postgraduate students.