Measuring Ultrafast Chemical Dynamics with New Light Sources

Measuring Ultrafast Chemical Dynamics with New Light Sources PDF Author: Marco Siano
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Measuring Ultrafast Chemical Dynamics with New Light Sources

Measuring Ultrafast Chemical Dynamics with New Light Sources PDF Author: Marco Siano
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses PDF Author: Markus Kitzler
Publisher: Springer
ISBN: 3319201735
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.

Femtochemistry: Ultrafast Chemical And Physical Processes In Molecular Systems

Femtochemistry: Ultrafast Chemical And Physical Processes In Molecular Systems PDF Author: Majed Chergui
Publisher: World Scientific
ISBN: 981454826X
Category :
Languages : en
Pages : 718

Get Book Here

Book Description
This book highlights the latest experimental and theoretical developments in the field of femtochemistry, with papers describing the physics and chemistry of ultrafast processes in small molecules, complex molecular systems, clusters, biological systems, solids, matrices, liquids and at surfaces and interfaces. The recent developments in frequency-domain studies of femtodynamics are also presented. In addition, the latest achievements in femtosecond control of chemical reactions are presented, together with the newest techniques in real-time probing of reactions such as ultrafast x-ray or electron diffraction. The papers are rich in references giving a clearcut state-of-the-art of the topics being discussed. The book should be a valuable tool to all persons in the field and to young scientists.Contributors include: A H Zewail, J Jortner, V S Letokhov, J Manz, R S Berry, C Wittig, K B Eisenthal, A W Castleman Jr., J T Hynes, W H Gadzuk, R Kosloff, S Mukamel, K R Wilson; G Fleming, D Wiersma, K Yoshihara, V Sundström, A Apkarian, N Scherer, A Myers, R Schinke, J R Huber, R B Gerber, G Gerber and P M Champion.

Molecular-frame Measurements of Light-induced Processes Using Rotational Coherences Driven by Ultrafast Laser Pulses

Molecular-frame Measurements of Light-induced Processes Using Rotational Coherences Driven by Ultrafast Laser Pulses PDF Author: Huynh Van Sa Lam
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
One of the main goals of ultrafast atomic, molecular, and optical physics is to monitor and control chemical reactions in real time. Ultrashort laser pulses (time scales in picoseconds or shorter) provide sufficiently high spatio-temporal resolution to study the reaction dynamics. Together with the development of shorter pulses, studies of these reactions in three-dimensional (3D) space are also crucial since the 3D structures determine the physical and chemical properties of molecules. For example, stereoisomers, such as chiral molecules, have the same molecular formula but can behave very differently in reactions with other stereoisomers or optical pulses because of the different orientations of their atoms in space. However, in a gas-phase experiment, the orientation-dependent information is usually lost after averaging over a randomly distributed molecular sample. Many different methods have been investigated to solve this important problem. In 2014, Makhija et al. demonstrated that the angle-dependent strong-field ionization of ethylene (C2H4), an asymmetric top molecule, can be retrieved from a time-resolved measurement of the yield of the cation. In this pump-probe experiment, the pump aligns and the probe ionizes the molecules, and the ion yield is measured as a function of pump-probe delay. The angle dependence is retrieved from fitting to this delay-dependent ion yield. This time-domain approach, called Orientation Resolution through Rotational Coherence Spectroscopy (ORRCS), has many advantages that can be exploited in other applications. The main theme of this work is the further development of ORRCS for extracting orientation-resolved information of different processes from rotational wave packet dynamics. The first goal of this dissertation is to systematically investigate and develop the ORRCS retrieval algorithm, since the retrieval of the angle dependence is sensitive to many parameters. We perform a series of experiments and statistical analyses to evaluate different types of errors, determine the appropriate size of the model, and check the consistency of the retrieval. Specifically, we look at the angle-dependent strong-field ionization of carbon dioxide (CO2, a linear molecule) and sulfur dioxide (SO2, an asymmetric top molecule). Strong-field ionization of CO2 has been discussed extensively in the literature because there were significant discrepancies between different experiments and theories, while SO2 has been used extensively in other experiments. The second goal of this dissertation is to expand the time-domain approach to momentum measurements. With this new development, we present two applications of ORRCS to the dissociation and photoionization of molecules. In the dissociation of molecules, the axial recoil approximation is often used without validation. We show that this approximation can be tested by measuring the momentum distributions of the fragment ions as a function of pump-probe delay. In particular, we examine the dissociation of CO2 and N2 with 800 nm and 262 nm laser pulses, respectively. In each case, we determine how the likelihood of dissociation depends on the initial orientation of the molecule and the effect of the laser field on the momentum distribution of the fragment ions. With a similar framework but different interpretation, we show that substantial information about molecular-frame photoelectron angular distributions can be obtained using rotational wave packets. We retrieve the alignment dependence of photoelectron angular distributions from N2, CO2, and C2H4 in the few-photon ionization regime. We also compare few-photon ionization with single-photon ionization and strong-field ionization to enrich our knowledge in this regime, which is not very well understood. We believe that the time-domain approach discussed in this work is useful in many areas of ultrafast physics and chemistry. With the rapid development of high-repetition-rate light sources in recent years, we expect that many measurements, including those using x-ray free-electron lasers and ultrafast electron beams, will have the ability to apply our method and gain valuable insights into molecular structures and dynamics in the near future.

Energy and Water Development Appropriations for 2018

Energy and Water Development Appropriations for 2018 PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Federal aid to energy development
Languages : en
Pages : 1360

Get Book Here

Book Description


Ultrafast Processes in Spectroscopy

Ultrafast Processes in Spectroscopy PDF Author: Orazio Svelto
Publisher: Springer Science & Business Media
ISBN: 1461558972
Category : Science
Languages : en
Pages : 628

Get Book Here

Book Description
This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency conversion techniques provide a large variety of high-performance light sources for ultrashort pulses. With these sources ultrafast phenomena in physical, chemical and biological systems and in electronic de vi(:es are now studied extensively. Ultrafast technology is becoming one of the basic and common tools presently entering a wide variety of scientific fields not only for basic re search but also for promoting new applications in various areas. We feel that these pro ceedings vividly reflect the present status of the field.

Ultrafast X-ray Science at the Advanced Light Source

Ultrafast X-ray Science at the Advanced Light Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Our scientific understanding of the static or time-averaged structure of condensed matter on the atomic scale has been dramatically advanced by direct structural measurements using x-ray techniques and modern synchrotron sources. Of course the structure of condensed matter is not static, and to understanding the behavior of condensed matter at the most fundamental level requires structural measurements on the time scale on which atoms move. The evolution of condensed-matter structure, via the making and breaking of chemical bonds and the rearrangement of atoms, occurs on the fundamental time scale of a vibrational period, (almost equal to)100 fs. Atomic motion and structural dynamics on this time scale ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes. The integration of x-ray measurement techniques, a high-brightness femtosecond x-ray source, femtosecond lasers, and stroboscopic pump-probe techniques will provide the unique capability to address fundamental scientific questions in solid-state physics, chemistry, AMO physics, and biology involving structural dynamics. In this paper, we review recent work in ultrafast x-ray science at the ALS including time-resolved diffraction measurements and efforts to develop dedicated beamlines for femtosecond x-ray experiments.

Encyclopedia of Chemical Physics and Physical Chemistry

Encyclopedia of Chemical Physics and Physical Chemistry PDF Author: John H. Moore
Publisher: CRC Press
ISBN: 1003803288
Category : Science
Languages : en
Pages : 986

Get Book Here

Book Description
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.

Research Program Summary, Department of Materials Sciences and Engineering: Lawrence Berkeley National Laboratory

Research Program Summary, Department of Materials Sciences and Engineering: Lawrence Berkeley National Laboratory PDF Author:
Publisher: DIANE Publishing
ISBN: 1428918493
Category :
Languages : en
Pages : 35

Get Book Here

Book Description


Ultrashort Pulse Lasers and Ultrafast Phenomena

Ultrashort Pulse Lasers and Ultrafast Phenomena PDF Author: Takayoshi Kobayashi
Publisher: CRC Press
ISBN: 0429591721
Category : Medical
Languages : en
Pages : 708

Get Book Here

Book Description
This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the author’s group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy. Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions