Author: Stephen Barnett
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
Matrix Methods in Stability Theory
Author: Stephen Barnett
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
Matrix Methods: Theory, Algorithms And Applications - Dedicated To The Memory Of Gene Golub
Author: Vadim Olshevsky
Publisher: World Scientific
ISBN: 9814469556
Category : Mathematics
Languages : en
Pages : 604
Book Description
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.
Publisher: World Scientific
ISBN: 9814469556
Category : Mathematics
Languages : en
Pages : 604
Book Description
Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.
Stability Theory for Dynamic Equations on Time Scales
Author: Anatoly A. Martynyuk
Publisher: Birkhäuser
ISBN: 3319422138
Category : Mathematics
Languages : en
Pages : 233
Book Description
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.
Publisher: Birkhäuser
ISBN: 3319422138
Category : Mathematics
Languages : en
Pages : 233
Book Description
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.
Stability Theory of Differential Equations
Author: Richard Bellman
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178
Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178
Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.
Ordinary Differential Equations and Stability Theory:
Author: David A. Sanchez
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179
Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179
Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Matrix Diagonal Stability in Systems and Computation
Author: Eugenius Kaszkurewicz
Publisher: Springer Science & Business Media
ISBN: 1461213460
Category : Mathematics
Languages : en
Pages : 279
Book Description
This monograph presents a collection of results, observations, and examples related to dynamical systems described by linear and nonlinear ordinary differential and difference equations. In particular, dynamical systems that are susceptible to analysis by the Liapunov approach are considered. The naive observation that certain "diagonal-type" Liapunov functions are ubiquitous in the literature attracted the attention of the authors and led to some natural questions. Why does this happen so often? What are the spe cial virtues of these functions in this context? Do they occur so frequently merely because they belong to the simplest class of Liapunov functions and are thus more convenient, or are there any more specific reasons? This monograph constitutes the authors' synthesis of the work on this subject that has been jointly developed by them, among others, producing and compiling results, properties, and examples for many years, aiming to answer these questions and also to formalize some of the folklore or "cul ture" that has grown around diagonal stability and diagonal-type Liapunov functions. A natural answer to these questions would be that the use of diagonal type Liapunov functions is frequent because of their simplicity within the class of all possible Liapunov functions. This monograph shows that, although this obvious interpretation is often adequate, there are many in stances in which the Liapunov approach is best taken advantage of using diagonal-type Liapunov functions. In fact, they yield necessary and suffi cient stability conditions for some classes of nonlinear dynamical systems.
Publisher: Springer Science & Business Media
ISBN: 1461213460
Category : Mathematics
Languages : en
Pages : 279
Book Description
This monograph presents a collection of results, observations, and examples related to dynamical systems described by linear and nonlinear ordinary differential and difference equations. In particular, dynamical systems that are susceptible to analysis by the Liapunov approach are considered. The naive observation that certain "diagonal-type" Liapunov functions are ubiquitous in the literature attracted the attention of the authors and led to some natural questions. Why does this happen so often? What are the spe cial virtues of these functions in this context? Do they occur so frequently merely because they belong to the simplest class of Liapunov functions and are thus more convenient, or are there any more specific reasons? This monograph constitutes the authors' synthesis of the work on this subject that has been jointly developed by them, among others, producing and compiling results, properties, and examples for many years, aiming to answer these questions and also to formalize some of the folklore or "cul ture" that has grown around diagonal stability and diagonal-type Liapunov functions. A natural answer to these questions would be that the use of diagonal type Liapunov functions is frequent because of their simplicity within the class of all possible Liapunov functions. This monograph shows that, although this obvious interpretation is often adequate, there are many in stances in which the Liapunov approach is best taken advantage of using diagonal-type Liapunov functions. In fact, they yield necessary and suffi cient stability conditions for some classes of nonlinear dynamical systems.
Topics in Matrix Analysis
Author: Roger A. Horn
Publisher: Cambridge University Press
ISBN: 9780521467131
Category : Mathematics
Languages : en
Pages : 620
Book Description
This book treats several topics in matrix theory not included in its predecessor volume, Matrix Analysis.
Publisher: Cambridge University Press
ISBN: 9780521467131
Category : Mathematics
Languages : en
Pages : 620
Book Description
This book treats several topics in matrix theory not included in its predecessor volume, Matrix Analysis.
Matrix Methods in Stability Theory
Author: Stephen Barnett
Publisher:
ISBN: 9780177716164
Category : Differential equations
Languages : en
Pages : 148
Book Description
Publisher:
ISBN: 9780177716164
Category : Differential equations
Languages : en
Pages : 148
Book Description
Stability of Dynamical Systems
Author: Xiaoxin Liao
Publisher: Elsevier
ISBN: 0080550614
Category : Mathematics
Languages : en
Pages : 719
Book Description
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. - Presents comprehensive theory and methodology of stability analysis - Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation - Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers
Publisher: Elsevier
ISBN: 0080550614
Category : Mathematics
Languages : en
Pages : 719
Book Description
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. - Presents comprehensive theory and methodology of stability analysis - Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation - Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers
Linear Matrix Inequalities in System and Control Theory
Author: Stephen Boyd
Publisher: SIAM
ISBN: 9781611970777
Category : Mathematics
Languages : en
Pages : 203
Book Description
In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.
Publisher: SIAM
ISBN: 9781611970777
Category : Mathematics
Languages : en
Pages : 203
Book Description
In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.