Author: Gérard Favier
Publisher: John Wiley & Sons
ISBN: 1786301555
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Matrix and Tensor Decompositions in Signal Processing, Volume 2
Author: Gérard Favier
Publisher: John Wiley & Sons
ISBN: 1786301555
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Publisher: John Wiley & Sons
ISBN: 1786301555
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Nonnegative Matrix and Tensor Factorizations
Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN: 9780470747285
Category : Science
Languages : en
Pages : 500
Book Description
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
Publisher: John Wiley & Sons
ISBN: 9780470747285
Category : Science
Languages : en
Pages : 500
Book Description
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
From Algebraic Structures to Tensors
Author: Gérard Favier
Publisher: John Wiley & Sons
ISBN: 1786301547
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Nowadays, tensors play a central role for the representation, mining, analysis, and fusion of multidimensional, multimodal, and heterogeneous big data in numerous fields. This set on Matrices and Tensors in Signal Processing aims at giving a self-contained and comprehensive presentation of various concepts and methods, starting from fundamental algebraic structures to advanced tensor-based applications, including recently developed tensor models and efficient algorithms for dimensionality reduction and parameter estimation. Although its title suggests an orientation towards signal processing, the results presented in this set will also be of use to readers interested in other disciplines. This first book provides an introduction to matrices and tensors of higher-order based on the structures of vector space and tensor space. Some standard algebraic structures are first described, with a focus on the hilbertian approach for signal representation, and function approximation based on Fourier series and orthogonal polynomial series. Matrices and hypermatrices associated with linear, bilinear and multilinear maps are more particularly studied. Some basic results are presented for block matrices. The notions of decomposition, rank, eigenvalue, singular value, and unfolding of a tensor are introduced, by emphasizing similarities and differences between matrices and tensors of higher-order.
Publisher: John Wiley & Sons
ISBN: 1786301547
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Nowadays, tensors play a central role for the representation, mining, analysis, and fusion of multidimensional, multimodal, and heterogeneous big data in numerous fields. This set on Matrices and Tensors in Signal Processing aims at giving a self-contained and comprehensive presentation of various concepts and methods, starting from fundamental algebraic structures to advanced tensor-based applications, including recently developed tensor models and efficient algorithms for dimensionality reduction and parameter estimation. Although its title suggests an orientation towards signal processing, the results presented in this set will also be of use to readers interested in other disciplines. This first book provides an introduction to matrices and tensors of higher-order based on the structures of vector space and tensor space. Some standard algebraic structures are first described, with a focus on the hilbertian approach for signal representation, and function approximation based on Fourier series and orthogonal polynomial series. Matrices and hypermatrices associated with linear, bilinear and multilinear maps are more particularly studied. Some basic results are presented for block matrices. The notions of decomposition, rank, eigenvalue, singular value, and unfolding of a tensor are introduced, by emphasizing similarities and differences between matrices and tensors of higher-order.
Mathematics of Big Data
Author: Jeremy Kepner
Publisher: MIT Press
ISBN: 0262347911
Category : Computers
Languages : en
Pages : 443
Book Description
The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.
Publisher: MIT Press
ISBN: 0262347911
Category : Computers
Languages : en
Pages : 443
Book Description
The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.
Tensor Computation for Data Analysis
Author: Yipeng Liu
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Tensors for Data Processing
Author: Yipeng Liu
Publisher: Academic Press
ISBN: 0323859658
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application
Publisher: Academic Press
ISBN: 0323859658
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application
Advances in Information and Communication
Author: Kohei Arai
Publisher: Springer Nature
ISBN: 3030731006
Category : Technology & Engineering
Languages : en
Pages : 1125
Book Description
This book aims to provide an international forum for scholarly researchers, practitioners and academic communities to explore the role of information and communication technologies and its applications in technical and scholarly development. The conference attracted a total of 464 submissions, of which 152 submissions (including 4 poster papers) have been selected after a double-blind review process. Academic pioneering researchers, scientists, industrial engineers and students will find this series useful to gain insight into the current research and next-generation information science and communication technologies. This book discusses the aspects of communication, data science, ambient intelligence, networking, computing, security and Internet of things, from classical to intelligent scope. The authors hope that readers find the volume interesting and valuable; it gathers chapters addressing state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.
Publisher: Springer Nature
ISBN: 3030731006
Category : Technology & Engineering
Languages : en
Pages : 1125
Book Description
This book aims to provide an international forum for scholarly researchers, practitioners and academic communities to explore the role of information and communication technologies and its applications in technical and scholarly development. The conference attracted a total of 464 submissions, of which 152 submissions (including 4 poster papers) have been selected after a double-blind review process. Academic pioneering researchers, scientists, industrial engineers and students will find this series useful to gain insight into the current research and next-generation information science and communication technologies. This book discusses the aspects of communication, data science, ambient intelligence, networking, computing, security and Internet of things, from classical to intelligent scope. The authors hope that readers find the volume interesting and valuable; it gathers chapters addressing state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.
High-Performance Tensor Computations in Scientific Computing and Data Science
Author: Edoardo Angelo Di Napoli
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Image Processing and Communications
Author: Michał Choraś
Publisher: Springer Nature
ISBN: 3030312542
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
This book presents a selection of high-quality peer-reviewed research papers on various aspects of computer science and networks. It not only discusses emerging applications of currently available solutions, but also outlines potential future techniques and lines of research in pattern recognition, image processing and communications. Given its scope, the book will be of considerable interest to researchers, students and practitioners alike. All papers gathered here were presented at the Image Processing and Communications Conference, held in Bydgoszcz, Poland on September 11–13, 2019.
Publisher: Springer Nature
ISBN: 3030312542
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
This book presents a selection of high-quality peer-reviewed research papers on various aspects of computer science and networks. It not only discusses emerging applications of currently available solutions, but also outlines potential future techniques and lines of research in pattern recognition, image processing and communications. Given its scope, the book will be of considerable interest to researchers, students and practitioners alike. All papers gathered here were presented at the Image Processing and Communications Conference, held in Bydgoszcz, Poland on September 11–13, 2019.
Women in Signal Processing
Author: Hagit Messer
Publisher: Frontiers Media SA
ISBN: 2832500501
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
At present, less than 30% of researchers worldwide are women. As an estimate, this number is even lower in the field of Signal Processing, with some sources indicating it could be around 10%. Long-standing biases and gender stereotypes are discouraging girls and women away from science related fields, and STEM research in particular. Science and gender equality are, however, essential to ensure sustainable development as highlighted by UNESCO. In order to change traditional mindsets, gender equality must be promoted, stereotypes defeated, and girls and women should be encouraged to pursue STEM careers. Frontiers in Signal Processing is proud to offer this platform to promote the work of women researchers and engineers, across all areas of Signal Processing. The work presented here highlights the diversity of research performed across the entire breadth of the Signal Processing landscape, and presents advances in theory, experiment and methodology with applications to compelling problems. This article collection is open for submissions across all sections of the journal, and new articles will be added as they are published. Please note: to be considered for this collection, the corresponding author should be a female researcher.
Publisher: Frontiers Media SA
ISBN: 2832500501
Category : Technology & Engineering
Languages : en
Pages : 156
Book Description
At present, less than 30% of researchers worldwide are women. As an estimate, this number is even lower in the field of Signal Processing, with some sources indicating it could be around 10%. Long-standing biases and gender stereotypes are discouraging girls and women away from science related fields, and STEM research in particular. Science and gender equality are, however, essential to ensure sustainable development as highlighted by UNESCO. In order to change traditional mindsets, gender equality must be promoted, stereotypes defeated, and girls and women should be encouraged to pursue STEM careers. Frontiers in Signal Processing is proud to offer this platform to promote the work of women researchers and engineers, across all areas of Signal Processing. The work presented here highlights the diversity of research performed across the entire breadth of the Signal Processing landscape, and presents advances in theory, experiment and methodology with applications to compelling problems. This article collection is open for submissions across all sections of the journal, and new articles will be added as they are published. Please note: to be considered for this collection, the corresponding author should be a female researcher.