Author: Werner E. Kohler
Publisher: American Mathematical Soc.
ISBN: 9780821896952
Category : Mathematics
Languages : en
Pages : 516
Book Description
In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field. The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes: Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood. Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types. Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use. Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propogating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused solely by the mechanism of random multiple scattering. Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.
Mathematics of Random Media
Author: Werner E. Kohler
Publisher: American Mathematical Soc.
ISBN: 9780821896952
Category : Mathematics
Languages : en
Pages : 516
Book Description
In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field. The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes: Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood. Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types. Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use. Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propogating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused solely by the mechanism of random multiple scattering. Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.
Publisher: American Mathematical Soc.
ISBN: 9780821896952
Category : Mathematics
Languages : en
Pages : 516
Book Description
In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field. The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes: Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood. Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types. Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use. Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propogating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused solely by the mechanism of random multiple scattering. Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.
Random Media
Author: George Papanicolaou
Publisher: Springer Science & Business Media
ISBN: 1461387256
Category : Mathematics
Languages : en
Pages : 322
Book Description
This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.
Publisher: Springer Science & Business Media
ISBN: 1461387256
Category : Mathematics
Languages : en
Pages : 322
Book Description
This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.
Brownian Motion, Obstacles and Random Media
Author: Alain-Sol Sznitman
Publisher: Springer Science & Business Media
ISBN: 3662112817
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.
Publisher: Springer Science & Business Media
ISBN: 3662112817
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.
Ten Lectures on Random Media
Author: Erwin Bolthausen
Publisher: Springer Science & Business Media
ISBN: 9783764367039
Category : Mathematics
Languages : en
Pages : 132
Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Publisher: Springer Science & Business Media
ISBN: 9783764367039
Category : Mathematics
Languages : en
Pages : 132
Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Caught by Disorder
Author: Peter Stollmann
Publisher: Springer Science & Business Media
ISBN: 1461201691
Category : Mathematics
Languages : en
Pages : 177
Book Description
Disorder is one of the predominant topics in science today. The present text is devoted to the mathematical studyofsome particular cases ofdisordered systems. It deals with waves in disordered media. To understand the significance of the influence of disorder, let us start by describing the propagation of waves in a sufficiently ordered or regular environment. That they do in fact propagate is a basic experience that is verified by our senses; we hear sound (acoustic waves) see (electromagnetic waves) and use the fact that electromagnetic waves travel long distances in many aspects ofour daily lives. The discovery that disorder can suppress the transport properties of a medium is oneof the fundamental findings of physics. In its most prominent practical application, the semiconductor, it has revolutionized the technical progress in the past century. A lot of what we see in the world today depends on that relatively young device. The basic phenomenon of wave propagation in disordered media is called a metal-insulator transition: a disordered medium can exhibit good transport prop erties for waves ofrelatively high energy (like a metal) and suppress the propaga tion of waves of low energy (like an insulator). Here we are actually talking about quantum mechanical wave functions that are used to describe electronic transport properties. To give an initial idea of why such a phenomenon could occur, we have to recall that in physical theories waves are represented by solutions to certain partial differential equations. These equations link time derivatives to spatial derivatives.
Publisher: Springer Science & Business Media
ISBN: 1461201691
Category : Mathematics
Languages : en
Pages : 177
Book Description
Disorder is one of the predominant topics in science today. The present text is devoted to the mathematical studyofsome particular cases ofdisordered systems. It deals with waves in disordered media. To understand the significance of the influence of disorder, let us start by describing the propagation of waves in a sufficiently ordered or regular environment. That they do in fact propagate is a basic experience that is verified by our senses; we hear sound (acoustic waves) see (electromagnetic waves) and use the fact that electromagnetic waves travel long distances in many aspects ofour daily lives. The discovery that disorder can suppress the transport properties of a medium is oneof the fundamental findings of physics. In its most prominent practical application, the semiconductor, it has revolutionized the technical progress in the past century. A lot of what we see in the world today depends on that relatively young device. The basic phenomenon of wave propagation in disordered media is called a metal-insulator transition: a disordered medium can exhibit good transport prop erties for waves ofrelatively high energy (like a metal) and suppress the propaga tion of waves of low energy (like an insulator). Here we are actually talking about quantum mechanical wave functions that are used to describe electronic transport properties. To give an initial idea of why such a phenomenon could occur, we have to recall that in physical theories waves are represented by solutions to certain partial differential equations. These equations link time derivatives to spatial derivatives.
Ten Lectures on Random Media
Author: Erwin Bolthausen
Publisher: Birkhäuser
ISBN: 3034881592
Category : Mathematics
Languages : en
Pages : 120
Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Publisher: Birkhäuser
ISBN: 3034881592
Category : Mathematics
Languages : en
Pages : 120
Book Description
The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Evolution of Systems in Random Media
Author: Vladimir S. Korolyuk
Publisher: CRC Press
ISBN: 9780849394058
Category : Mathematics
Languages : en
Pages : 358
Book Description
Evolution of Systems in Random Media is an innovative, application-oriented text that explores stochastic models of evolutionary stochastic systems in random media. Specially designed for researchers and practitioners who do not have a background in random evolutions, the book allows non-experts to explore the potential information and applications that random evolutions can provide.
Publisher: CRC Press
ISBN: 9780849394058
Category : Mathematics
Languages : en
Pages : 358
Book Description
Evolution of Systems in Random Media is an innovative, application-oriented text that explores stochastic models of evolutionary stochastic systems in random media. Specially designed for researchers and practitioners who do not have a background in random evolutions, the book allows non-experts to explore the potential information and applications that random evolutions can provide.
Waves in Periodic and Random Media
Author: Peter Kuchment
Publisher: American Mathematical Soc.
ISBN: 0821832867
Category : Mathematics
Languages : en
Pages : 232
Book Description
Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.
Publisher: American Mathematical Soc.
ISBN: 0821832867
Category : Mathematics
Languages : en
Pages : 232
Book Description
Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.
Particle Systems, Random Media and Large Deviations
Author: Richard Durrett
Publisher: American Mathematical Soc.
ISBN: 0821850423
Category : Mathematics
Languages : en
Pages : 394
Book Description
Covers the proceedings of the 1984 AMS Summer Research Conference. This work provides a summary of results from some of the areas in probability theory; interacting particle systems, percolation, random media (bulk properties and hydrodynamics), the Ising model and large deviations.
Publisher: American Mathematical Soc.
ISBN: 0821850423
Category : Mathematics
Languages : en
Pages : 394
Book Description
Covers the proceedings of the 1984 AMS Summer Research Conference. This work provides a summary of results from some of the areas in probability theory; interacting particle systems, percolation, random media (bulk properties and hydrodynamics), the Ising model and large deviations.
An Introduction to Fronts in Random Media
Author: Jack Xin
Publisher: Springer Science & Business Media
ISBN: 0387876839
Category : Mathematics
Languages : en
Pages : 165
Book Description
This book aims to give a user friendly tutorial of an interdisciplinary research topic (fronts or interfaces in random media) to senior undergraduates and beginning grad uate students with basic knowledge of partial differential equations (PDE) and prob ability. The approach taken is semiformal, using elementary methods to introduce ideas and motivate results as much as possible, then outlining how to pursue rigor ous theorems, with details to be found in the references section. Since the topic concerns both differential equations and probability, and proba bility is traditionally a quite technical subject with a heavy measure theoretic com ponent, the book strives to develop a simplistic approach so that students can grasp the essentials of fronts and random media and their applications in a self contained tutorial. The book introduces three fundamental PDEs (the Burgers equation, Hamilton– Jacobi equations, and reaction–diffusion equations), analysis of their formulas and front solutions, and related stochastic processes. It builds up tools gradually, so that students are brought to the frontiers of research at a steady pace. A moderate number of exercises are provided to consolidate the concepts and ideas. The main methods are representation formulas of solutions, Laplace meth ods, homogenization, ergodic theory, central limit theorems, large deviation princi ples, variational principles, maximum principles, and Harnack inequalities, among others. These methods are normally covered in separate books on either differential equations or probability. It is my hope that this tutorial will help to illustrate how to combine these tools in solving concrete problems.
Publisher: Springer Science & Business Media
ISBN: 0387876839
Category : Mathematics
Languages : en
Pages : 165
Book Description
This book aims to give a user friendly tutorial of an interdisciplinary research topic (fronts or interfaces in random media) to senior undergraduates and beginning grad uate students with basic knowledge of partial differential equations (PDE) and prob ability. The approach taken is semiformal, using elementary methods to introduce ideas and motivate results as much as possible, then outlining how to pursue rigor ous theorems, with details to be found in the references section. Since the topic concerns both differential equations and probability, and proba bility is traditionally a quite technical subject with a heavy measure theoretic com ponent, the book strives to develop a simplistic approach so that students can grasp the essentials of fronts and random media and their applications in a self contained tutorial. The book introduces three fundamental PDEs (the Burgers equation, Hamilton– Jacobi equations, and reaction–diffusion equations), analysis of their formulas and front solutions, and related stochastic processes. It builds up tools gradually, so that students are brought to the frontiers of research at a steady pace. A moderate number of exercises are provided to consolidate the concepts and ideas. The main methods are representation formulas of solutions, Laplace meth ods, homogenization, ergodic theory, central limit theorems, large deviation princi ples, variational principles, maximum principles, and Harnack inequalities, among others. These methods are normally covered in separate books on either differential equations or probability. It is my hope that this tutorial will help to illustrate how to combine these tools in solving concrete problems.