Author: Ranee K. Brylinski
Publisher: CRC Press
ISBN: 1420035371
Category : Computers
Languages : en
Pages : 446
Book Description
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science. Mathematics of Quantum Computation brings together leading computer sc
Mathematics of Quantum Computation
Author: Ranee K. Brylinski
Publisher: CRC Press
ISBN: 1420035371
Category : Computers
Languages : en
Pages : 446
Book Description
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science. Mathematics of Quantum Computation brings together leading computer sc
Publisher: CRC Press
ISBN: 1420035371
Category : Computers
Languages : en
Pages : 446
Book Description
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science. Mathematics of Quantum Computation brings together leading computer sc
Mathematics of Quantum Computing
Author: Wolfgang Scherer
Publisher: Springer Nature
ISBN: 3030123588
Category : Computers
Languages : en
Pages : 773
Book Description
This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.
Publisher: Springer Nature
ISBN: 3030123588
Category : Computers
Languages : en
Pages : 773
Book Description
This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.
Classical and Quantum Computation
Author: Alexei Yu. Kitaev
Publisher: American Mathematical Soc.
ISBN: 0821832298
Category : Computers
Languages : en
Pages : 274
Book Description
An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Publisher: American Mathematical Soc.
ISBN: 0821832298
Category : Computers
Languages : en
Pages : 274
Book Description
An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Mathematics of Quantum Computation and Quantum Technology
Author: Louis Kauffman
Publisher: CRC Press
ISBN: 1584889004
Category : Mathematics
Languages : en
Pages : 625
Book Description
Research and development in the pioneering field of quantum computing involve just about every facet of science and engineering, including the significant areas of mathematics and physics. Based on the firm understanding that mathematics and physics are equal partners in the continuing study of quantum science, Mathematics of Quantum Computation an
Publisher: CRC Press
ISBN: 1584889004
Category : Mathematics
Languages : en
Pages : 625
Book Description
Research and development in the pioneering field of quantum computing involve just about every facet of science and engineering, including the significant areas of mathematics and physics. Based on the firm understanding that mathematics and physics are equal partners in the continuing study of quantum science, Mathematics of Quantum Computation an
Quantum Computing for Everyone
Author: Chris Bernhardt
Publisher: MIT Press
ISBN: 0262039257
Category : Computers
Languages : en
Pages : 214
Book Description
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
Publisher: MIT Press
ISBN: 0262039257
Category : Computers
Languages : en
Pages : 214
Book Description
An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
Topological Quantum Computation
Author: Zhenghan Wang
Publisher: American Mathematical Soc.
ISBN: 0821849301
Category : Computers
Languages : en
Pages : 134
Book Description
Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.
Publisher: American Mathematical Soc.
ISBN: 0821849301
Category : Computers
Languages : en
Pages : 134
Book Description
Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.
Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems
Author: Masanori Ohya
Publisher: Springer Science & Business Media
ISBN: 9400701713
Category : Science
Languages : en
Pages : 768
Book Description
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Publisher: Springer Science & Business Media
ISBN: 9400701713
Category : Science
Languages : en
Pages : 768
Book Description
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Quantum Computing
Author: Eleanor G. Rieffel
Publisher: MIT Press
ISBN: 0262526670
Category : Computers
Languages : en
Pages : 389
Book Description
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book.
Publisher: MIT Press
ISBN: 0262526670
Category : Computers
Languages : en
Pages : 389
Book Description
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book.
Introduction to Topological Quantum Computation
Author: Jiannis K. Pachos
Publisher: Cambridge University Press
ISBN: 1139936689
Category : Science
Languages : en
Pages : 220
Book Description
Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.
Publisher: Cambridge University Press
ISBN: 1139936689
Category : Science
Languages : en
Pages : 220
Book Description
Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.
Supervised Learning with Quantum Computers
Author: Maria Schuld
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.