Author: Peter A. Ruymgaart
Publisher: Springer Science & Business Media
ISBN: 3642733417
Category : Mathematics
Languages : en
Pages : 182
Book Description
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters.
Mathematics of Kalman-Bucy Filtering
Author: Peter A. Ruymgaart
Publisher: Springer Science & Business Media
ISBN: 3642733417
Category : Mathematics
Languages : en
Pages : 182
Book Description
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters.
Publisher: Springer Science & Business Media
ISBN: 3642733417
Category : Mathematics
Languages : en
Pages : 182
Book Description
The second edition has not deviated significantly from the first. The printing of this edition, however, has allowed us to make a number of corrections which escaped our scrutiny at the time of the first printing, and to generally improve and tighten our presentation of the material. Many of these changes were suggested to us by colleagues and readers and their kindness in doing so is greatly appreciated. Delft, The Netherlands and P. A. Ruymgaart Buffalo, New York, December, 1987 T. T. Soong Preface to the First Edition Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but as all also in the social sciences, biological sciences, medical sciences, as well other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters.
Mathematics of Kalman-Bucy Filtering
Author: P.A. Ruymgaart
Publisher: Springer Science & Business Media
ISBN: 3642968422
Category : Computers
Languages : en
Pages : 181
Book Description
Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but also in the social sciences, biological sciences, medical sciences, as well as all other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without them fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters. The material is meant to be a theoretical complement to courses dealing with applications and is designed for students who are well versed in the techniques of Kalman-Bucy filtering but who are also interested in the mathematics on which these may be based. The main topic addressed in this book is continuous-time Kalman-Bucy filtering. Although the discrete-time Kalman filter results were obtained first, the continuous-time results are important when dealing with systems developing in time continuously, which are hence more appropriately mod eled by differential equations than by difference equations. On the other hand, observations from the former can be obtained in a discrete fashion.
Publisher: Springer Science & Business Media
ISBN: 3642968422
Category : Computers
Languages : en
Pages : 181
Book Description
Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but also in the social sciences, biological sciences, medical sciences, as well as all other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without them fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters. The material is meant to be a theoretical complement to courses dealing with applications and is designed for students who are well versed in the techniques of Kalman-Bucy filtering but who are also interested in the mathematics on which these may be based. The main topic addressed in this book is continuous-time Kalman-Bucy filtering. Although the discrete-time Kalman filter results were obtained first, the continuous-time results are important when dealing with systems developing in time continuously, which are hence more appropriately mod eled by differential equations than by difference equations. On the other hand, observations from the former can be obtained in a discrete fashion.
Mathematics of Kalman-Bucy Filtering
Author: P a Ruymgaart
Publisher:
ISBN: 9783642968433
Category :
Languages : en
Pages : 184
Book Description
Publisher:
ISBN: 9783642968433
Category :
Languages : en
Pages : 184
Book Description
Estimation, Control, and the Discrete Kalman Filter
Author: Donald E. Catlin
Publisher: Springer Science & Business Media
ISBN: 1461245281
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.
Publisher: Springer Science & Business Media
ISBN: 1461245281
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.
Kalman Filtering
Author: Mohinder S. Grewal
Publisher: John Wiley & Sons
ISBN: 111898496X
Category : Technology & Engineering
Languages : en
Pages : 639
Book Description
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Publisher: John Wiley & Sons
ISBN: 111898496X
Category : Technology & Engineering
Languages : en
Pages : 639
Book Description
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Optimal Filtering
Author: Brian D. O. Anderson
Publisher: Courier Corporation
ISBN: 0486136892
Category : Science
Languages : en
Pages : 370
Book Description
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Publisher: Courier Corporation
ISBN: 0486136892
Category : Science
Languages : en
Pages : 370
Book Description
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Stochastic Processes and Filtering Theory
Author: Andrew H. Jazwinski
Publisher: Courier Corporation
ISBN: 0486318192
Category : Science
Languages : en
Pages : 404
Book Description
This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.
Publisher: Courier Corporation
ISBN: 0486318192
Category : Science
Languages : en
Pages : 404
Book Description
This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.
Optimal State Estimation
Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 0470045337
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Publisher: John Wiley & Sons
ISBN: 0470045337
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Fundamentals of Stochastic Filtering
Author: Alan Bain
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.