Mathematics, Ideas and the Physical Real

Mathematics, Ideas and the Physical Real PDF Author: Albert Lautman
Publisher: A&C Black
ISBN: 1441146547
Category : Philosophy
Languages : en
Pages : 354

Get Book Here

Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.

Mathematics, Ideas and the Physical Real

Mathematics, Ideas and the Physical Real PDF Author: Albert Lautman
Publisher: A&C Black
ISBN: 1441146547
Category : Philosophy
Languages : en
Pages : 354

Get Book Here

Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.

Mathematics, Ideas and the Physical Real

Mathematics, Ideas and the Physical Real PDF Author: Albert Lautman
Publisher: A&C Black
ISBN: 1441144331
Category : Philosophy
Languages : en
Pages : 353

Get Book Here

Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.

Mathematics, Ideas and the Physical Real

Mathematics, Ideas and the Physical Real PDF Author:
Publisher: Bloomsbury Publishing
ISBN: 144112344X
Category : Philosophy
Languages : en
Pages : 354

Get Book Here

Book Description
"Originally published in French as Les Mathematiques, les idees et le reel physique. Librairie Philosophique, J. VRIN, 2006"--T.p. verso.

Mathematics and the Physical World

Mathematics and the Physical World PDF Author: Morris Kline
Publisher: Courier Corporation
ISBN: 0486136310
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.

Topics in Physical Mathematics

Topics in Physical Mathematics PDF Author: Kishore Marathe
Publisher: Springer Science & Business Media
ISBN: 1848829396
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.

ARNOLD: Swimming Against the Tide

ARNOLD: Swimming Against the Tide PDF Author: Boris A. Khesin
Publisher: American Mathematical Society
ISBN: 1470416999
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
Vladimir Arnold, an eminent mathematician of our time, is known both for his mathematical results, which are many and prominent, and for his strong opinions, often expressed in an uncompromising and provoking manner. His dictum that "Mathematics is a part of physics where experiments are cheap" is well known. This book consists of two parts: selected articles by and an interview with Vladimir Arnold, and a collection of articles about him written by his friends, colleagues, and students. The book is generously illustrated by a large collection of photographs, some never before published. The book presents many a facet of this extraordinary mathematician and man, from his mathematical discoveries to his daredevil outdoor adventures.

Mathematics and the Real World

Mathematics and the Real World PDF Author: Zvi Artstein
Publisher: Prometheus Books
ISBN: 1616145463
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
In this accessible and illuminating study of how the science of mathematics developed, a veteran math researcher and educator looks at the ways in which our evolutionary makeup is both a help and a hindrance to the study of math. Artstein chronicles the discovery of important mathematical connections between mathematics and the real world from ancient times to the present. The author then describes some of the contemporary applications of mathematics—in probability theory, in the study of human behavior, and in combination with computers, which give mathematics unprecedented power. The author concludes with an insightful discussion of why mathematics, for most people, is so frustrating. He argues that the rigorous logical structure of math goes against the grain of our predisposed ways of thinking as shaped by evolution, presumably because the talent needed to cope with logical mathematics gave the human race as a whole no evolutionary advantage. With this in mind, he offers ways to overcome these innate impediments in the teaching of math.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics PDF Author: Daniel Rosenthal
Publisher: Springer
ISBN: 3319056549
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.

How Not to Be Wrong

How Not to Be Wrong PDF Author: Jordan Ellenberg
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.