Author: Alan B. Tayler
Publisher: Oxford University Press
ISBN: 9780198515593
Category : Mathematics
Languages : en
Pages : 292
Book Description
This textbook demonstrates the power of mathematics in solving practical, scientific, and technical problems through mathematical modelling techniques. It has been designed specifically for final year undergraduate and graduate students, and springs from the author's extensive teachingexperience. The text is combined with twenty-one carefully ordered problems taken from real situations, and students are encouraged to develop the skill of constructing their own models of new situations.
Mathematical Models in Applied Mechanics
Author: Alan B. Tayler
Publisher: Oxford University Press
ISBN: 9780198515593
Category : Mathematics
Languages : en
Pages : 292
Book Description
This textbook demonstrates the power of mathematics in solving practical, scientific, and technical problems through mathematical modelling techniques. It has been designed specifically for final year undergraduate and graduate students, and springs from the author's extensive teachingexperience. The text is combined with twenty-one carefully ordered problems taken from real situations, and students are encouraged to develop the skill of constructing their own models of new situations.
Publisher: Oxford University Press
ISBN: 9780198515593
Category : Mathematics
Languages : en
Pages : 292
Book Description
This textbook demonstrates the power of mathematics in solving practical, scientific, and technical problems through mathematical modelling techniques. It has been designed specifically for final year undergraduate and graduate students, and springs from the author's extensive teachingexperience. The text is combined with twenty-one carefully ordered problems taken from real situations, and students are encouraged to develop the skill of constructing their own models of new situations.
Mathematical Models in the Applied Sciences
Author: A. C. Fowler
Publisher: Cambridge University Press
ISBN: 9780521467032
Category : Mathematics
Languages : en
Pages : 440
Book Description
Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.
Publisher: Cambridge University Press
ISBN: 9780521467032
Category : Mathematics
Languages : en
Pages : 440
Book Description
Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.
Convex Models of Uncertainty in Applied Mechanics
Author: Y. Ben-Haim
Publisher: Elsevier
ISBN: 1483290972
Category : Mathematics
Languages : en
Pages : 240
Book Description
Recognition of the need to introduce the ideas of uncertainty in a wide variety of scientific fields today reflects in part some of the profound changes in science and engineering over the last decades. Nobody questions the ever-present need for a solid foundation in applied mechanics. Neither does anyone question nowadays the fundamental necessity to recognize that uncertainty exists, to learn to evaluate it rationally, and to incorporate it into design.This volume provides a timely and stimulating overview of the analysis of uncertainty in applied mechanics. It is not just one more rendition of the traditional treatment of the subject, nor is it intended to supplement existing structural engineering books. Its aim is to fill a gap in the existing professional literature by concentrating on the non-probabilistic model of uncertainty. It provides an alternative avenue for the analysis of uncertainty when only a limited amount of information is available. The first chapter briefly reviews probabilistic methods and discusses the sensitivity of the probability of failure to uncertain knowledge of the system. Chapter two discusses the mathematical background of convex modelling. In the remainder of the book, convex modelling is applied to various linear and nonlinear problems. Uncertain phenomena are represented throughout the book by convex sets, and this approach is referred to as convex modelling.This book is intended to inspire researchers in their goal towards further growth and development in this field.
Publisher: Elsevier
ISBN: 1483290972
Category : Mathematics
Languages : en
Pages : 240
Book Description
Recognition of the need to introduce the ideas of uncertainty in a wide variety of scientific fields today reflects in part some of the profound changes in science and engineering over the last decades. Nobody questions the ever-present need for a solid foundation in applied mechanics. Neither does anyone question nowadays the fundamental necessity to recognize that uncertainty exists, to learn to evaluate it rationally, and to incorporate it into design.This volume provides a timely and stimulating overview of the analysis of uncertainty in applied mechanics. It is not just one more rendition of the traditional treatment of the subject, nor is it intended to supplement existing structural engineering books. Its aim is to fill a gap in the existing professional literature by concentrating on the non-probabilistic model of uncertainty. It provides an alternative avenue for the analysis of uncertainty when only a limited amount of information is available. The first chapter briefly reviews probabilistic methods and discusses the sensitivity of the probability of failure to uncertain knowledge of the system. Chapter two discusses the mathematical background of convex modelling. In the remainder of the book, convex modelling is applied to various linear and nonlinear problems. Uncertain phenomena are represented throughout the book by convex sets, and this approach is referred to as convex modelling.This book is intended to inspire researchers in their goal towards further growth and development in this field.
Mathematical Modelling in Solid Mechanics
Author: Francesco dell'Isola
Publisher: Springer
ISBN: 9811037647
Category : Science
Languages : en
Pages : 327
Book Description
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
Publisher: Springer
ISBN: 9811037647
Category : Science
Languages : en
Pages : 327
Book Description
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
Mathematical Modeling in Continuum Mechanics
Author: Roger Temam
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Models of Mechanics
Author: A. Klarbring
Publisher: Springer Science & Business Media
ISBN: 1402048351
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
This textbook on models and modeling in mechanics introduces a new unifying approach to applied mechanics: through the concept of the open scheme, a step-by-step approach to modeling evolves. The unifying approach enables a very large scope on relatively few pages: the book treats theories of mass points and rigid bodies, continuum models of solids and fluids, as well as traditional engineering mechanics of beams, cables, pipe flow and wave propagation.
Publisher: Springer Science & Business Media
ISBN: 1402048351
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
This textbook on models and modeling in mechanics introduces a new unifying approach to applied mechanics: through the concept of the open scheme, a step-by-step approach to modeling evolves. The unifying approach enables a very large scope on relatively few pages: the book treats theories of mass points and rigid bodies, continuum models of solids and fluids, as well as traditional engineering mechanics of beams, cables, pipe flow and wave propagation.
Mathematical Modeling in Science and Engineering
Author: Ismael Herrera
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
Micro to MACRO Mathematical Modelling in Soil Mechanics
Author: Pasquale Giovine
Publisher: Springer
ISBN: 3319994743
Category : Mathematics
Languages : en
Pages : 407
Book Description
This special issue collects selected contributions (excluding general lectures) of a Symposium on "Micro to MACRO Mathematical Modelling in Soil Mechanics", which took place at the University of Reggio Calabria, Italy, from May 29th to June 1st, 2018. The Symposium provided an opportunity to enhance the scientific debate on the construction of mathematical models for the description of the physical behaviour of soils, as well as on the suggestions provided by the micro-mechanical observation of the matter. The focus was on the comparison between the appropriateness of models and the need of mathematics to obtain rigorous results, which involves know-how from applied mathematical physics, geotechnical engineering and mechanics of solids. The contributions were selected by the Editors and the other Members of the Scientific Committee of the Symposium: Gianfranco Capriz (Pisa, Roma), Claudio di Prisco (Milan), Wolfgang Ehlers (Stuttgart), James T. Jenkins (Cornell), Stefan Luding (Twente), David Muir Wood (Dundee), Kenichi Soga (Berkeley).
Publisher: Springer
ISBN: 3319994743
Category : Mathematics
Languages : en
Pages : 407
Book Description
This special issue collects selected contributions (excluding general lectures) of a Symposium on "Micro to MACRO Mathematical Modelling in Soil Mechanics", which took place at the University of Reggio Calabria, Italy, from May 29th to June 1st, 2018. The Symposium provided an opportunity to enhance the scientific debate on the construction of mathematical models for the description of the physical behaviour of soils, as well as on the suggestions provided by the micro-mechanical observation of the matter. The focus was on the comparison between the appropriateness of models and the need of mathematics to obtain rigorous results, which involves know-how from applied mathematical physics, geotechnical engineering and mechanics of solids. The contributions were selected by the Editors and the other Members of the Scientific Committee of the Symposium: Gianfranco Capriz (Pisa, Roma), Claudio di Prisco (Milan), Wolfgang Ehlers (Stuttgart), James T. Jenkins (Cornell), Stefan Luding (Twente), David Muir Wood (Dundee), Kenichi Soga (Berkeley).
An Introduction to Mathematical Modeling
Author: J. Tinsley Oden
Publisher: John Wiley & Sons
ISBN: 1118105745
Category : Mathematics
Languages : en
Pages : 348
Book Description
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Publisher: John Wiley & Sons
ISBN: 1118105745
Category : Mathematics
Languages : en
Pages : 348
Book Description
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Modeling and Control in Solid Mechanics
Author: A.M. Khludnev
Publisher: Birkhäuser
ISBN: 3034889844
Category : Mathematics
Languages : en
Pages : 380
Book Description
New trends in free boundary problems and new mathematical tools together with broadening areas of applications have led to attempts at presenting the state of art of the field in a unified way. In this monograph we focus on formal models representing contact problems for elastic and elastoplastic plates and shells. New approaches open up new fields for research. For example, in crack theory a systematic treatment of mathematical modelling and optimization of problems with cracks is required. Similarly, sensitivity analysis of solutions to problems subjected to perturbations, which forms an important part of the problem solving process, is the source of many open questions. Two aspects of sensitivity analysis, namely the behaviour of solutions under deformations of the domain of integration and perturbations of surfaces seem to be particularly demanding in this context. On writing this book we aimed at providing the reader with a self-contained study of the mathematical modelling in mechanics. Much attention is given to modelling of typical constructions applied in many different areas. Plates and shallow shells which are widely used in the aerospace industry provide good exam ples. Allied optimization problems consist in finding the constructions which are of maximal strength (endurance) and satisfy some other requirements, ego weight limitations. Mathematical modelling of plates and shells always requires a reasonable compromise between two principal needs. One of them is the accuracy of the de scription of a physical phenomenon (as required by the principles of mechanics).
Publisher: Birkhäuser
ISBN: 3034889844
Category : Mathematics
Languages : en
Pages : 380
Book Description
New trends in free boundary problems and new mathematical tools together with broadening areas of applications have led to attempts at presenting the state of art of the field in a unified way. In this monograph we focus on formal models representing contact problems for elastic and elastoplastic plates and shells. New approaches open up new fields for research. For example, in crack theory a systematic treatment of mathematical modelling and optimization of problems with cracks is required. Similarly, sensitivity analysis of solutions to problems subjected to perturbations, which forms an important part of the problem solving process, is the source of many open questions. Two aspects of sensitivity analysis, namely the behaviour of solutions under deformations of the domain of integration and perturbations of surfaces seem to be particularly demanding in this context. On writing this book we aimed at providing the reader with a self-contained study of the mathematical modelling in mechanics. Much attention is given to modelling of typical constructions applied in many different areas. Plates and shallow shells which are widely used in the aerospace industry provide good exam ples. Allied optimization problems consist in finding the constructions which are of maximal strength (endurance) and satisfy some other requirements, ego weight limitations. Mathematical modelling of plates and shells always requires a reasonable compromise between two principal needs. One of them is the accuracy of the de scription of a physical phenomenon (as required by the principles of mechanics).