Mathematical Modeling of Lithium Ion Batteries and Cells

Mathematical Modeling of Lithium Ion Batteries and Cells PDF Author: V. Subramanian
Publisher: The Electrochemical Society
ISBN: 1566779464
Category : Fuel cells
Languages : en
Pages : 37

Get Book Here

Book Description

Mathematical Modeling of Lithium Ion Batteries and Cells

Mathematical Modeling of Lithium Ion Batteries and Cells PDF Author: V. Subramanian
Publisher: The Electrochemical Society
ISBN: 1566779464
Category : Fuel cells
Languages : en
Pages : 37

Get Book Here

Book Description


Advances in Lithium-Ion Batteries

Advances in Lithium-Ion Batteries PDF Author: Walter van Schalkwijk
Publisher: Springer Science & Business Media
ISBN: 0306475081
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.

Battery System Modeling

Battery System Modeling PDF Author: Shunli Wang
Publisher: Elsevier
ISBN: 0323904335
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. - Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling - Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation - Provides a dedicated chapter on active control strategies

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage PDF Author: Alejandro A. Franco
Publisher: Springer
ISBN: 1447156773
Category : Technology & Engineering
Languages : en
Pages : 253

Get Book Here

Book Description
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Mathematical Modeling of Lithium Batteries

Mathematical Modeling of Lithium Batteries PDF Author: Krishnan S. Hariharan
Publisher: Springer
ISBN: 3319035274
Category : Technology & Engineering
Languages : en
Pages : 213

Get Book Here

Book Description
This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.

Advances in Mathematical Modeling and Simulation of Electrochemical Processes and Oxygen Depolarized Cathodes and Activated Cathodes for Chlor-alkali and Chlorate Processes

Advances in Mathematical Modeling and Simulation of Electrochemical Processes and Oxygen Depolarized Cathodes and Activated Cathodes for Chlor-alkali and Chlorate Processes PDF Author: Electrochemical Society. Industrial Electrolysis and Electrochemical Engineering Division
Publisher: The Electrochemical Society
ISBN: 9781566772044
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description


Battery Management Systems

Battery Management Systems PDF Author: Gregory L. Plett
Publisher: Artech House Publishers
ISBN: 9781630810276
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
State-Of-The-Art applications of equivalent-circuit methods as they pertain to solving problems in battery management and control.

Handbook of Batteries and Fuel Cells

Handbook of Batteries and Fuel Cells PDF Author: David Linden
Publisher: McGraw-Hill Companies
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1118

Get Book Here

Book Description


Battery Management Systems

Battery Management Systems PDF Author: H.J. Bergveld
Publisher: Springer Science & Business Media
ISBN: 9401708436
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.

Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy

Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy PDF Author: Manoj Sahni
Publisher: Springer Nature
ISBN: 9811659524
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
This book presents new knowledge and recent developments in all aspects of computational techniques, mathematical modeling, energy systems, and applications of fuzzy sets and intelligent computing. The book is a collection of best selected research papers presented at the Second International Conference on “Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy (MMCITRE 2021),” organized by the Department of Mathematics, Pandit Deendayal Petroleum University, in association with Forum for Interdisciplinary Mathematics. The book provides innovative works of researchers, academicians, and students in the area of interdisciplinary mathematics, statistics, computational intelligence, and renewable energy.