Mathematics of Wave Phenomena

Mathematics of Wave Phenomena PDF Author: Willy Dörfler
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

Mathematics of Wave Phenomena

Mathematics of Wave Phenomena PDF Author: Willy Dörfler
Publisher: Springer Nature
ISBN: 3030471748
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

Mathematical Methods for Wave Phenomena

Mathematical Methods for Wave Phenomena PDF Author: Norman Bleistein
Publisher: Academic Press
ISBN: 0080916953
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.

Mathematics of Wave Propagation

Mathematics of Wave Propagation PDF Author: Julian L. Davis
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.

Hyperbolic Partial Differential Equations and Wave Phenomena

Hyperbolic Partial Differential Equations and Wave Phenomena PDF Author: Mitsuru Ikawa
Publisher: American Mathematical Soc.
ISBN: 9780821810217
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
The familiar wave equation is the most fundamental hyperbolic partial differential equation. Other hyperbolic equations, both linear and nonlinear, exhibit many wave-like phenomena. The primary theme of this book is the mathematical investigation of such wave phenomena. The exposition begins with derivations of some wave equations, including waves in an elastic body, such as those observed in connection with earthquakes. Certain existence results are proved early on, allowing the later analysis to concentrate on properties of solutions. The existence of solutions is established using methods from functional analysis. Many of the properties are developed using methods of asymptotic solutions. The last chapter contains an analysis of the decay of the local energy of solutions. This analysis shows, in particular, that in a connected exterior domain, disturbances gradually drift into the distance and the effect of a disturbance in a bounded domain becomes small after sufficient time passes. The book is geared toward a wide audience interested in PDEs. Prerequisite to the text are some real analysis and elementary functional analysis. It would be suitable for use as a text in PDEs or mathematical physics at the advanced undergraduate and graduate level.

Wave Propagation in Electromagnetic Media

Wave Propagation in Electromagnetic Media PDF Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461232848
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.

Analytical and Numerical Methods for Wave Propagation in Fluid Media

Analytical and Numerical Methods for Wave Propagation in Fluid Media PDF Author: K. Murawski
Publisher: World Scientific
ISBN: 9789812776631
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.

Mathematical Methods For Physics

Mathematical Methods For Physics PDF Author: H. W. Wyld
Publisher: CRC Press
ISBN: 0429978642
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.

Waves and Compressible Flow

Waves and Compressible Flow PDF Author: Hilary Ockendon
Publisher: Springer Science & Business Media
ISBN: 0387218025
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
This book covers compressible flow however the authors also show how wave phenomena in electromagnetism and solid mechanics can be treated using similar mathematical methods. It caters to the needs of the modern student by providing the tools necessary for a mathematical analysis of most kinds of waves liable to be encountered in modern science and technology. At the same time emphasis is laid on the physical background and modeling that requires these tools.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626

Get Book Here

Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Diffusion-Wave Fields

Diffusion-Wave Fields PDF Author: Andreas Mandelis
Publisher: Springer Science & Business Media
ISBN: 1475735480
Category : Science
Languages : en
Pages : 752

Get Book Here

Book Description
Develops a unified mathematical framework for treating a wide variety of diffusion-related periodic phenomena in such areas as heat transfer, electrical conduction, and light scattering. Deriving and using Green functions in one and higher dimensions to provide a unified approach, the author develops the properties of diffusion-wave fields first for the well-studied case of thermal-wave fields and then applies the methods to nonthermal fields.