Mathematical and Numerical Analysis of Biological Neural Networks

Mathematical and Numerical Analysis of Biological Neural Networks PDF Author: Qingnan Li
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 232

Get Book Here

Book Description


Neural Networks and Numerical Analysis

Neural Networks and Numerical Analysis PDF Author: Bruno Després
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110783185
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
This book uses numerical analysis as the main tool to investigate methods in machine learning and A.I. The efficiency of neural network representation on for polynomial functions is studied in detail, together with an original description of the Latin hypercube method. In addition, unique features include the use of Tensorflow for implementation on session and the application n to the construction of new optimized numerical schemes.

Mathematical Approaches to Neural Networks

Mathematical Approaches to Neural Networks PDF Author: J.G. Taylor
Publisher: Elsevier
ISBN: 0080887392
Category : Computers
Languages : en
Pages : 391

Get Book Here

Book Description
The subject of Neural Networks is being seen to be coming of age, after its initial inception 50 years ago in the seminal work of McCulloch and Pitts. It is proving to be valuable in a wide range of academic disciplines and in important applications in industrial and business tasks. The progress being made in each approach is considerable. Nevertheless, both stand in need of a theoretical framework of explanation to underpin their usage and to allow the progress being made to be put on a firmer footing. This book aims to strengthen the foundations in its presentation of mathematical approaches to neural networks. It is through these that a suitable explanatory framework is expected to be found. The approaches span a broad range, from single neuron details to numerical analysis, functional analysis and dynamical systems theory. Each of these avenues provides its own insights into the way neural networks can be understood, both for artificial ones and simplified simulations. As a whole, the publication underlines the importance of the ever-deepening mathematical understanding of neural networks.

Mathematical and Theoretical Neuroscience

Mathematical and Theoretical Neuroscience PDF Author: Giovanni Naldi
Publisher: Springer
ISBN: 3319682970
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

An Introduction to Neural Network Methods for Differential Equations

An Introduction to Neural Network Methods for Differential Equations PDF Author: Neha Yadav
Publisher: Springer
ISBN: 9401798168
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.

Introduction to Neural Dynamics and Signal Transmission Delay

Introduction to Neural Dynamics and Signal Transmission Delay PDF Author: Jianhong Wu
Publisher: Walter de Gruyter
ISBN: 3110879972
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
In the design of a neural network, either for biological modeling, cognitive simulation, numerical computation or engineering applications, it is important to investigate the network's computational performance which is usually described by the long-term behaviors, called dynamics, of the model equations. The purpose of this book is to give an introduction to the mathematical modeling and analysis of networks of neurons from the viewpoint of dynamical systems.

Analysis of Neural Networks

Analysis of Neural Networks PDF Author: U. an der Heiden
Publisher: Springer Science & Business Media
ISBN: 3642455174
Category : Medical
Languages : en
Pages : 172

Get Book Here

Book Description
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is written in the spirit of the work of Cowan, Feldman, and Wilson (see sect. 2.2). The networks are described by systems of nonlinear integral equations. Therefore the paper can also be read as a course in nonlinear system theory. The interpretation of the elements as neurons is not a necessary one. However, for vividness the mathematical results are often expressed in neurophysiological terms, such as excitation, inhibition, membrane potentials, and impulse frequencies. The nonlinearities are essential constituents of the theory.

Analysis of Neural Data

Analysis of Neural Data PDF Author: Robert E. Kass
Publisher: Springer
ISBN: 1461496020
Category : Medical
Languages : en
Pages : 663

Get Book Here

Book Description
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

Tutorials in Mathematical Biosciences I

Tutorials in Mathematical Biosciences I PDF Author: Alla Borisyuk
Publisher: Springer
ISBN: 3540315446
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics PDF Author: Christoph Börgers
Publisher: Springer
ISBN: 3319511718
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.