Author: Vladimir Zorich
Publisher: Springer Science & Business Media
ISBN: 3642148131
Category : Mathematics
Languages : en
Pages : 133
Book Description
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
Mathematical Analysis of Problems in the Natural Sciences
Author: Vladimir Zorich
Publisher: Springer Science & Business Media
ISBN: 3642148131
Category : Mathematics
Languages : en
Pages : 133
Book Description
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
Publisher: Springer Science & Business Media
ISBN: 3642148131
Category : Mathematics
Languages : en
Pages : 133
Book Description
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."
Mathematics Applied to Deterministic Problems in the Natural Sciences
Author: C. C. Lin
Publisher: SIAM
ISBN: 9780898712292
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.
Publisher: SIAM
ISBN: 9780898712292
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.
Mathematical Analysis I
Author: Vladimir A. Zorich
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Solving Problems in Mathematical Analysis, Part I
Author: Tomasz Radożycki
Publisher: Springer
ISBN: 9783030358433
Category : Mathematics
Languages : en
Pages : 369
Book Description
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Publisher: Springer
ISBN: 9783030358433
Category : Mathematics
Languages : en
Pages : 369
Book Description
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Mathematics for Natural Scientists
Author: Lev Kantorovich
Publisher: Springer
ISBN: 149392785X
Category : Science
Languages : en
Pages : 536
Book Description
This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.
Publisher: Springer
ISBN: 149392785X
Category : Science
Languages : en
Pages : 536
Book Description
This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.
Mathematical Analysis II
Author: Vladimir A. Zorich
Publisher: Krishna Prakashan Media
ISBN:
Category : Mathematics
Languages : en
Pages : 792
Book Description
The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.
Publisher: Krishna Prakashan Media
ISBN:
Category : Mathematics
Languages : en
Pages : 792
Book Description
The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.
Solving Problems in Mathematical Analysis, Part I
Author: Tomasz Radożycki
Publisher: Springer Nature
ISBN: 3030358445
Category : Mathematics
Languages : en
Pages : 375
Book Description
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Publisher: Springer Nature
ISBN: 3030358445
Category : Mathematics
Languages : en
Pages : 375
Book Description
This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.
Problems in Real Analysis
Author: Teodora-Liliana Radulescu
Publisher: Springer Science & Business Media
ISBN: 0387773797
Category : Mathematics
Languages : en
Pages : 462
Book Description
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Publisher: Springer Science & Business Media
ISBN: 0387773797
Category : Mathematics
Languages : en
Pages : 462
Book Description
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Inverse Problems in the Mathematical Sciences
Author: Charles W. Groetsch
Publisher: Springer Science & Business Media
ISBN: 3322992020
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.
Publisher: Springer Science & Business Media
ISBN: 3322992020
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.
Mathematics And The Natural Sciences: The Physical Singularity Of Life
Author: Giuseppe Longo
Publisher: World Scientific
ISBN: 1908977795
Category : Science
Languages : en
Pages : 337
Book Description
This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a
Publisher: World Scientific
ISBN: 1908977795
Category : Science
Languages : en
Pages : 337
Book Description
This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a