Materials, Design, and Modeling for Bipolar/end Plates in Polymer Electrolyte Membrane Fuel Cells

Materials, Design, and Modeling for Bipolar/end Plates in Polymer Electrolyte Membrane Fuel Cells PDF Author: Atul Kumar
Publisher:
ISBN:
Category :
Languages : en
Pages : 414

Get Book Here

Book Description

Materials, Design, and Modeling for Bipolar/end Plates in Polymer Electrolyte Membrane Fuel Cells

Materials, Design, and Modeling for Bipolar/end Plates in Polymer Electrolyte Membrane Fuel Cells PDF Author: Atul Kumar
Publisher:
ISBN:
Category :
Languages : en
Pages : 414

Get Book Here

Book Description


Bipolar Plate Materials and Single Cell Model for Polymer Electrolyte Membrane Fuel Cells

Bipolar Plate Materials and Single Cell Model for Polymer Electrolyte Membrane Fuel Cells PDF Author: Atul Kumar
Publisher:
ISBN:
Category :
Languages : en
Pages : 232

Get Book Here

Book Description


PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab PDF Author: Colleen Spiegel
Publisher: Elsevier
ISBN: 0080559018
Category : Computers
Languages : en
Pages : 454

Get Book Here

Book Description
Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations

Bio-inspired Design, Fabrication and Testing of Bipolar Plates for PEM Fuel Cells

Bio-inspired Design, Fabrication and Testing of Bipolar Plates for PEM Fuel Cells PDF Author: Nannan Guo
Publisher:
ISBN:
Category : Biomimetics
Languages : en
Pages : 173

Get Book Here

Book Description
"The flow field of a bipolar plate distributes reactants for polymer electrolyte membrane (PEM) fuel cells and removes the produced water from the fuel cells. It greatly influences the performance of fuel cells, especially the concentration losses. Two approaches were developed to improve flow field designs in this dissertation. One is inspired by the biological circulatory structures and called bio-inspired designs, which have great potential to transport reactant efficiently and hence improve fuel cell performance. Another way is using a network-based optimization model to optimize the conventional flow field configurations, i.e., pin-type, parallel and serpentine designs, to improve flow distributions within the channels. A three-dimensional, two-phase numerical model was developed to investigate the mass, velocity and pressure distributions within the different flow fields and also the final fuel cell performance. Selective Laser Sintering, which provides a cost- and time-efficient way to build parts with complicated geometries, was used to fabricate graphite composite bipolar plates with these developed designs. Different graphite materials, including natural graphite, synthetic graphite, carbon black, and carbon fiber, were investigated in order to achieve higher electrical conductivity and flexural strength of the fabricated bipolar plates. Experimental testing of the PEM fuel cells with these fabricated bipolar plates was carried out to verify the numerical model and compare the performance for different flow field designs. Both the numerical and experimental results demonstrated that the bio-inspired designs and the optimized designs could substantially improve the fuel cell performance compared to the traditional designs"--Abstract, page iv.

PEM Fuel Cells

PEM Fuel Cells PDF Author: Gurbinder Kaur
Publisher: Elsevier
ISBN: 0128237090
Category : Science
Languages : en
Pages : 584

Get Book Here

Book Description
PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides a comprehensive introduction to the principles of PEM fuel cell, their working condition and application, and the latest breakthroughs and challenges for fuel cell technology. Each chapter follows a systematic and consistent structure with clear illustrations and diagrams for easy understanding. The opening chapters address the basics of PEM technology; stacking and membrane electrode assembly for PEM, degradation mechanisms of electrocatalysts, platinum dissolution and redeposition, carbon-support corrosion, bipolar plates and carbon nanotubes for the PEM, and gas diffusion layers. Thermodynamics, operating conditions, and electrochemistry address fuel cell efficiency and the fundamental workings of the PEM. Instruments and techniques for testing and diagnosis are then presented alongside practical tests. Dedicated chapters explain how to use MATLAB and COMSOL to conduct simulation and modeling of catalysts, gas diffusion layers, assembly, and membrane. Degradation and failure modes are discussed in detail, providing strategies and protocols for mitigation. High-temperature PEMs are also examined, as are the fundamentals of EIS. Critically, the environmental impact and life cycle of the production and storage of hydrogen are addressed, as are the risk and durability issues of PEMFC technology. Dedicated chapters are presented on the economics and commercialization of PEMFCs, including discussion of installation costs, initial capital costs, and the regulatory frameworks; apart from this, there is a separate chapter on their application to the automotive industry. Finally, future challenges and applications are considered. PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides an in-depth and comprehensive reference on every aspect of PEM fuel cells fundamentals, ideal for researchers, graduates, and students. Presents the fundamentals of PEM fuel cell technology, electrolytes, membranes, modeling, conductivity, recent trends, and future applications Addresses commercialization, public policy, and the environmental impacts of PEMFC in dedicated chapters Presents state-of-the-art PEMFC research alongside the underlying concepts

Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells PDF Author: Javaid Zaidi
Publisher: Springer Science & Business Media
ISBN: 0387735321
Category : Science
Languages : en
Pages : 439

Get Book Here

Book Description
From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

PEM Fuel Cells

PEM Fuel Cells PDF Author: Frano Barbir
Publisher: Academic Press
ISBN: 0123877105
Category : Science
Languages : en
Pages : 537

Get Book Here

Book Description
Demand for fuel cell technology is growing rapidly. Fuel cells are being commercialized to provide power to buildings like hospitals and schools, to replace batteries in portable electronic devices, and as replacements for internal combustion engines in vehicles. PEM (Proton Exchange Membrane) fuel cells are lighter, smaller, and more efficient than other types of fuel cell. As a result, over 80% of fuel cells being produced today are PEM cells. This new edition of Dr. Barbir's groundbreaking book still lays the groundwork for engineers, technicians and students better than any other resource, covering fundamentals of design, electrochemistry, heat and mass transport, as well as providing the context of system design and applications. Yet it now also provides invaluable information on the latest advances in modeling, diagnostics, materials, and components, along with an updated chapter on the evolving applications areas wherein PEM cells are being deployed. Comprehensive guide covers all aspects of PEM fuel cells, from theory and fundamentals to practical applications Provides solutions to heat and water management problems engineers must face when designing and implementing PEM fuel cells in systems Hundreds of original illustrations, real-life engineering examples, and end-of-chapter problems help clarify, contextualize, and aid understanding

Polymer Electrolyte Fuel Cell Degradation

Polymer Electrolyte Fuel Cell Degradation PDF Author: Matthew M. Mench
Publisher: Academic Press
ISBN: 0123869366
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.

Polymer Electrolyte Fuel Cell Degradation

Polymer Electrolyte Fuel Cell Degradation PDF Author: Matthew M. Mench
Publisher: Academic Press
ISBN: 0123869560
Category : Technology & Engineering
Languages : en
Pages : 473

Get Book Here

Book Description
For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome-cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. Designed to be relevant to the professional community in addition to researchers, this book will serve as a valuable reference featuring topics covered nowhere else and a one-stop-shop to create a solid platform for understanding this important area of development. The reference covers aspects of durability in the entire fuel cell stack. Each chapter also includes vision of pathways forward and an explanation of the tools needed to continue along the path toward commercialization. Features expert insights from contributing authors who are key industrial and academic leaders in the field Includes coverage of two key topics in the field- Testing and Protocol for Durability, and Computational Modeling Aspects of PEFC Durability- which are newly emerging, pivotally important subjects not systematically covered anywhere else Undertakes aspects of durability across the entire fuel stack, from membranes to bipolar plates

Mechanical Analysis of PEM Fuel Cell Stack Design

Mechanical Analysis of PEM Fuel Cell Stack Design PDF Author: Ahmet Evren Firat
Publisher: Cuvillier Verlag
ISBN: 3736992572
Category : Mathematics
Languages : en
Pages : 131

Get Book Here

Book Description
Polymer electrolyte membrane (PEM) fuel cell stack was analyzed from a mechanical point of view with the help of measurements and simulations in this study. The deflection of the fuel cell stack was measured with the help of the experimental set-up under operating conditions. The effects of cell operating parameters and cyclic conditions on the mechanical properties of the fuel cell stack were investigated. In order to extend the mechanical analysis of the fuel cells, two computational models were established containing the geometrical features in detail. A large-scale fuel cell stack model was built for the thermomechanical analysis. The second model was built on a cross-section geometry for the electrochemical analysis including fluid dynamics. The internal stress distribution and buckling of fuel cell stack were examined. The influence of the mechanical compression on the cell performance and squeezing of the gas diffusion layers are investigated. A design procedure is developed for fuel cell stack regarding the durability and performance from a mechanical point of view.