Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes

Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes PDF Author: Sunny S. Wicks
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Hierarchical advanced composite structures comprised of both nano- and micro-scale fibers are currently being studied as next-generation materials for multifunctional aerospace applications. Carbon nanotubes (CNTs) are an attractive reinforcing fiber for aerospace composites due to their scale and superior specific stiffness and strength, as well as their potential to enhance multifunctional properties. Nano-scale fibers can address current challenges in composites such as relatively weak through-thickness properties that occur due to matrix-rich regions, including those found at interlaminar ply interfaces, that are prone to delamination and lead to overall reductions in mechanical properties. Existing technologies such as stitching, z-pinning, and braiding provide through-thickness reinforcement; however, these improvements come with simultaneous reductions in in-plane properties. CNTs provide an alternative fiber reinforcement, though currently the literature reveals that laminate mechanical property enhancements are lower than expected. Investigations into how CNTs affect laminate properties have stalled due to difficulties with producing quality laminates and controlling CNT orientation and dispersion. In this work, manufacturing routes of a nano-engineered composite are developed to provide consistent control over laminate quality while placing aligned CNTs (A-CNTs) in the polymer matrix in the interlaminar and intralaminar regions. Manufacturing techniques are developed for growing aligned CNTs on a three-dimensional woven microfiber substrate and infiltrating the fuzzy fiber plies with polymer to realize the Fuzzy Fiber Reinforced Plastics (FFRP) architecture. These FFRP laminates show

Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes

Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes PDF Author: Sunny S. Wicks
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Hierarchical advanced composite structures comprised of both nano- and micro-scale fibers are currently being studied as next-generation materials for multifunctional aerospace applications. Carbon nanotubes (CNTs) are an attractive reinforcing fiber for aerospace composites due to their scale and superior specific stiffness and strength, as well as their potential to enhance multifunctional properties. Nano-scale fibers can address current challenges in composites such as relatively weak through-thickness properties that occur due to matrix-rich regions, including those found at interlaminar ply interfaces, that are prone to delamination and lead to overall reductions in mechanical properties. Existing technologies such as stitching, z-pinning, and braiding provide through-thickness reinforcement; however, these improvements come with simultaneous reductions in in-plane properties. CNTs provide an alternative fiber reinforcement, though currently the literature reveals that laminate mechanical property enhancements are lower than expected. Investigations into how CNTs affect laminate properties have stalled due to difficulties with producing quality laminates and controlling CNT orientation and dispersion. In this work, manufacturing routes of a nano-engineered composite are developed to provide consistent control over laminate quality while placing aligned CNTs (A-CNTs) in the polymer matrix in the interlaminar and intralaminar regions. Manufacturing techniques are developed for growing aligned CNTs on a three-dimensional woven microfiber substrate and infiltrating the fuzzy fiber plies with polymer to realize the Fuzzy Fiber Reinforced Plastics (FFRP) architecture. These FFRP laminates show

Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes

Hierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes PDF Author: Richard Li (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
Hierarchical carbon-nanotube (CNT)-based composites have significant potential to expand the performance and functionality of aerospace composite structures. Notably, circumferentially aligned CNT arrays have previously been grown on woven alumina filaments to form a "fuzzy fiber" reinforced plastic (FFRP) architecture with demonstrated improvements in inter- and intra-ply mechanical properties as well as multifunctional enhancement via tailorable electrical and thermal conductivities. However, thus far, the development of fuzzy carbon fiber reinforced plastics (fuzzy CFRP) with all-around enhanced mechanical properties has been elusive. In particular, prior work attaining growth of CNTs on carbon fibers (CF) have resulted in drastic reductions in fiber tensile strength (e.g., 55% loss), thereby compromising in-plane tensile properties of the resultant fuzzy CFRP. In this thesis, a novel method for high-yield growth of carbon nanotubes on carbon fiber is refined and implemented in the fabrication of unidirectional fuzzy CFRP plies with preserved tensile properties: Non-covalent functionalization of the CF surface coupled with a low temperature thermal chemical vapor deposition process enable high density catalyst adhesion and CNT growth below critical temperatures that would result in fiber strength loss. Successful scale-up to unidirectional fuzzy CFRP specimens with high (67%) and low (32%) CF volume fractions is presented. Testing results indicate that longitudinal elastic properties are retained for all fuzzy CFRP samples consistent with micromechanical analyses. Unexpectedly, the high fiber volume fraction fuzzy CFRP specimens show a 12% decrease in mean tensile strength that was hypothesized to be due to fiber damage introduced through transverse compression during processing of the fuzzy carbon fiber tows. As such, lower fiber volume fraction fuzzy CFRP specimens were subsequently tested and observed to retain strength. These advances pave the way for scale-up to fuzzy CFRP laminates with integrated multifunctionality and improved interlaminar performance without compromising in-plane mechanical properties critical to aerospace-grade composite materials.

Carbon Nanotube Enhanced Aerospace Composite Materials

Carbon Nanotube Enhanced Aerospace Composite Materials PDF Author: A. Paipetis
Publisher: Springer Science & Business Media
ISBN: 9400742452
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.

Characterization of Carbon Nanotube Based Composites under Consideration of Defects

Characterization of Carbon Nanotube Based Composites under Consideration of Defects PDF Author: Moones Rahmandoust
Publisher: Springer
ISBN: 3319002511
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.

Carbon Nanotube Enhanced Aerospace Composite Materials

Carbon Nanotube Enhanced Aerospace Composite Materials PDF Author: A. Paipetis
Publisher: Springer Science & Business Media
ISBN: 9400742460
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.

The Structural Integrity of Carbon Fiber Composites

The Structural Integrity of Carbon Fiber Composites PDF Author: Peter W. R Beaumont
Publisher: Springer
ISBN: 3319461206
Category : Technology & Engineering
Languages : en
Pages : 954

Get Book Here

Book Description
This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.

Experimental Characterization of Advanced Composite Materials

Experimental Characterization of Advanced Composite Materials PDF Author: Leif A. Carlsson
Publisher: CRC Press
ISBN: 142003202X
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
Over much of the last three decades, the evolution of techniques for characterizing composite materials has struggled to keep up with the advances of composite materials themselves and their broadening areas of application. In recent years, however, much work has been done to consolidate test methods and better understand those being used. Finally,

Nanoengineered Hierarchical Advanced Composites with Nanofiber Interlaminar Reinforcement for Enhanced Laminate-level Mechanical Performance

Nanoengineered Hierarchical Advanced Composites with Nanofiber Interlaminar Reinforcement for Enhanced Laminate-level Mechanical Performance PDF Author: Xinchen Ni
Publisher:
ISBN:
Category :
Languages : en
Pages : 177

Get Book Here

Book Description
At present, there is a need for novel, scalable, and high-performance structural materials that offer unprecedented combinations of stiffness, strength, and toughness at a low density, which can serve in a variety of applications in the aerospace, transportation, defense, and energy industries. To date, composite materials, specifically advanced carbon fiber reinforced plastics (CFRPs), which are comprised of high specific stiffness and strength continuous carbon microfibers and lightweight, relatively compliant polymers, have been among the most attractive materials and are used extensively in the aerospace sector. However, most CFRPs are fabricated by stacking plies in a layer-by-layer fashion, resulting in a weak polymer-rich region, known as the interlaminar region, at each ply interface that leads to poor properties through the laminate thickness. Although the mechanically superior microfibers are designed to be the primary load carriers, the much weaker polymer matrix causes the laminates to be prone to premature failure with interlaminar delamination, which negatively affects both in-plane and out-of-plane performance. This key shortcoming is known as the Achilles' heel of CFRPs, which hinders their design and wider adoption in critical structural applications. In this dissertation, a novel nanoengineering approach to address the longstanding problem of weak ply interfaces of CFRPs is developed and demonstrated. High densities (>10 billion nanofibers per cm2) of uniformly-distributed vertically aligned carbon nanotubes (A-CNTs) are placed between neighboring plies to bridge the weak polymer-rich interlaminar region in existing prepreg-based laminated composites, creating a hierarchical architecture termed "nanostitch". The effectiveness of nanostitching is evaluated via various mechanical tests including short-beam shear (SBS), Mode I and II fracture, and double edge-notched tension (DENT), in all of which the nanostitched composites have demonstrated enhanced mechanical performance. Furthermore, the multiscale reinforcement mechanisms resulting from the CNTs are elucidated via a variety of ex situ and in situ damage inspection techniques, including optical microscopy, scanning electron microscopy, lab-based micro-computed tomography, and in situ synchrotron radiation computed tomography (SRCT). Specifically, in SBS, despite no increase in static strength, a 115% average increase in fatigue life across all load levels (60 to 90% of static strength), with a larger increase of 249% in high-cycle (at 60% of static strength) fatigue, is observed. In Mode I and Mode II fracture, it is revealed that the interlaminar crack bifurcates into the intralaminar region from the interlaminar precrack, and then propagates within the intralaminar region parallel to the nanostitched interlaminar region as an "intralaminar delamination" in steady state. This unique crack bifurcation phenomenon has never been previously observed and is attributed to the A-CNTs adding interlaminar toughness to a level that causes the interlaminar crack to bifurcate into the less tough intralaminar region. In DENT, an 8% increase in ultimate tensile strength (UTS) is observed and is attributed to the A-CNTs suppressing critical interlaminar delaminations very close to final failure (greater than 90% UTS) via in situ SRCT. In addition to the positive reinforcement results observed for the nanostitched composites, a next-generation higher volume fraction nanostitched composite with additional levels of beneficial hierarchy termed "buckled nanostitch" or "nanostitch 2.0" is created by exploiting the unique buckling behavior displayed by patterned A-CNT forests under compression. This multilevel hierarchical architecture further enhances the composite mechanical performance: SBS strength by 7% and DENT strength by 28%, compared to the baseline composites. The dissertation not only presents a controllable, scalable manufacturing method to produce engineered structural materials that are hierarchically designed down to the nanoscale with enhanced mechanical performance, but it also establishes key new understanding of the complex and coupled strengthening and toughening mechanisms acting at different scales, as well as their effects on macroscopic laminate-level mechanical properties. A particular focus has been the seminal use of in situ SRCT to study the effects of the hierarchical nanoscale reinforcements, and thus the methods established provide an experimental path forward for future work in this area. Together, these advances open up new opportunities for creating next-generation engineered materials with a suite of programmable properties by controlling their structures and constituents across multiple length scales.

Carbon Nanotube Based Composites

Carbon Nanotube Based Composites PDF Author: Antonio Pantano
Publisher: Smithers Rapra
ISBN: 1847355870
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Carbon nanotubes (CNTs) have amazing properties and a key way to take advantage of this is by incorporating nanotubes into a matrix to build composite materials. The best candidates for this task are undoubtedly polymers. Almost every characteristic of a polymer can be significantly enhanced by adding carbon nanotubes and as a result, new potential applications of carbon nanotube enhanced polymer composites are discovered every day. However, before carbon nanotube enhanced polymer composites become commonplace there are some tough challenges that need to be overcome. This book reviews the status of worldwide research in both single-walled and multi-walled carbon nanotube based composites. It serves as a practical guide on carbon nanotube based composites and a reference to students and researchers from the academia and industry.

Synthesis, Characterization, and Mode I Fracture Toughness of Aligned Carbon Nanotube Polymer Matrix Nanocomposites

Synthesis, Characterization, and Mode I Fracture Toughness of Aligned Carbon Nanotube Polymer Matrix Nanocomposites PDF Author: Dale Leigh Lidston
Publisher:
ISBN:
Category :
Languages : en
Pages : 215

Get Book Here

Book Description
In an effort to fully understand the contribution of carbon nanotubes (CNTs) to strength and toughness enhancement in hierarchical nanoengineered composites, particularly steady state Mode I fracture toughness, RTM6 and EPON 862/W epoxy based vertically-aligned carbon nanotube (A-CNT) polymer nanocomposites (A-PNCs) are manufactured. These A-PNCs can be tested to isolate structure-property relationships between the polymer matrix and the A-CNTs without the presence of the micro-scale fibers. Additionally, A-CNT volume fraction can be varied via a densification process to realize 1-30% volume fraction (vf.%) A-PNCs. An investigation of the Mode I initiation fracture toughness via single edge notch beam (SENB) testing of A-PNCs with 1-5 vf.% uniaxially densified A-CNT forests finds that RTM6 baseline and A-PNC samples have a KIc,i of ~ 1 MPa-m1/2, with the exception of 1 vf.% having 1.33 ± 0.09 MPa-m1/2, which needs to be further explored due to process-structure questions of specimen quality. No statistically significant change is observed in EPON 862/W A-PNCs at 1-5 vf.% over baseline specimens having a KIc,i of 1.49 ± 0.06 MPa-m1/2 , indicating that A-CNTs do not offer any toughening at initiation in this system. Scanning electron microscopy of the fracture surface for both A-PNC systems reveals that